A new subfamily of enlargements of a maximally monotone operator

R.S. Burachik1 \hspace{1em} J.E. Martínez Legaz2 \hspace{1em} M. Rezaie3 \hspace{1em} M. Théra4

1University of South Australia
2,3,4Universidad Autónoma de Barcelona, University of Isfahan, University of Limoges

Fitzpatrick Workshop
SPCOM 2015, 10 February
Motivation

Preliminaries

The family $\mathcal{H}(T)$

Enlargements of T

Case $T = \partial \varphi$
Motivation

Preliminaries

The family $\mathcal{H}(T)$

Enlargements of T

Case $T = \partial \varphi$
Outline

1 Motivation
2 Preliminaries
3 The family $\mathcal{H}(T)$
4 Enlargements of T
5 Case $T = \partial \varphi$
Outline

1. Motivation
2. Preliminaries
3. The family $\mathcal{H}(T)$
4. Enlargements of T
5. Case $T = \partial \varphi$
Motivation
Preliminaries
The family $\mathcal{H}(T)$
Enlargements of T
Case $T = \partial \varphi$

Monotone Inclusion Problem

Let $T : X \rightrightarrows X^*$ be maximal monotone. Many nonlinear problems are stated as:

Given $z \in X^*$, find $x \in X : z \in T(x)$ \hspace{1cm} (P_0)

Equivalently:

Given $z \in X^*$, find $x \in X : (x, z) \in G(T)$

solving $(P_0) \iff$ requires to know $G(T)$
Main Ingredients I: multivalued mappings

For $T : X \nRightarrow X^*$ we define

- its graph as $G(T) := \{(x, x^*) \in X \times X^* : x^* \in T(x)\}$,
- its domain as $D(T) := \{x \in X : T(x) \neq \emptyset\}$,
- its range as $R(T) := \bigcup\{T(x) : x \in D(T)\}$,

We say that T is

- *monotone* if
 \[
 \langle y - x, y^* - x^* \rangle \geq 0 \quad \forall (x, x^*), (y, y^*) \in G(T).
 \]

- *maximally monotone* if T has no monotone extension in the sense of graph inclusion.
Main Ingredients I: multivalued mappings

For $T : X \rightrightarrows X^*$ we define
- its graph as $G(T) := \{(x, x^*) \in X \times X^* : x^* \in T(x)\}$,
- its domain as $D(T) := \{x \in X : T(x) \neq \emptyset\}$,
- its range as $R(T) := \bigcup\{T(x) : x \in D(T)\}$,

We say that T is
- monotone if
 $$\langle y - x, y^* - x^* \rangle \geq 0 \quad \forall (x, x^*), (y, y^*) \in G(T).$$
- maximally monotone if T has no monotone extension in the sense of graph inclusion.
Main Ingredients I: multivalued mappings

For \(T : X \rightrightarrows X^* \) we define

- its graph as \(G(T) := \{ (x, x^*) \in X \times X^* : x^* \in T(x) \} \),
- its domain as \(D(T) := \{ x \in X : T(x) \neq \emptyset \} \),
- its range as \(R(T) := \bigcup \{ T(x) : x \in D(T) \} \),

We say that \(T \) is

- monotone if
 \[
 \langle y - x, y^* - x^* \rangle \geq 0 \quad \forall (x, x^*), (y, y^*) \in G(T).
 \]

- maximally monotone if \(T \) has no monotone extension in the sense of graph inclusion.
Main Ingredients I: multivalued mappings

For $T : X \rightrightarrows X^*$ we define

- its graph as $G(T) := \{(x, x^*) \in X \times X^* : x^* \in T(x)\}$,
- its domain as $D(T) := \{x \in X : T(x) \neq \emptyset\}$,
- its range as $R(T) := \bigcup\{T(x) : x \in D(T)\}$,

We say that T is

- monotone if

$$\langle y - x, y^* - x^* \rangle \geq 0 \quad \forall (x, x^*), (y, y^*) \in G(T).$$

- maximally monotone if T has no monotone extension in the sense of graph inclusion.
Main Ingredients I: multivalued mappings

For $T : X \rightrightarrows X^*$ we define

- its graph as $G(T) := \{(x, x^*) \in X \times X^* : x^* \in T(x)\}$,
- its domain as $D(T) := \{x \in X : T(x) \neq \emptyset\}$,
- its range as $R(T) := \bigcup\{T(x) : x \in D(T)\}$,

We say that T is

- **monotone** if

$$\langle y - x, y^* - x^* \rangle \geq 0 \quad \forall(x, x^*), (y, y^*) \in G(T).$$

- **maximally monotone** if T has no monotone extension in the sense of graph inclusion.
Main Ingredients I: multivalued mappings

For $T : X \rightrightarrows X^*$ we define

- its graph as $G(T) := \{(x, x^*) \in X \times X^* : x^* \in T(x)\}$,
- its domain as $D(T) := \{x \in X : T(x) \neq \emptyset\}$,
- its range as $R(T) := \bigcup\{T(x) : x \in D(T)\}$,

We say that T is

- **monotone** if

\[
\langle y - x, y^* - x^* \rangle \geq 0 \quad \forall (x, x^*), (y, y^*) \in G(T).
\]

- **maximally monotone** if T has no monotone extension in the sense of graph inclusion.
Main Ingredients II: subdifferentials

For $\varphi : X \rightarrow \mathbb{R}_\infty$ convex and lsc, we define

- $\text{Dom} \varphi := \{ x : \varphi(x) < \infty \}$, and
- we say that φ is proper when $\text{Dom} \varphi \neq \emptyset$.
- the subdifferential of φ is the multivalued mapping $\partial \varphi : X \rightrightarrows X^*$ defined by

$$\partial \varphi(x) := \{ x^* \in X^* : \varphi(y) - \varphi(x) \geq \langle x^*, y - x \rangle, \forall y \in X \},$$

when $x \in \text{Dom} \varphi$. Otherwise $\partial \varphi(x) = \emptyset$.
Main Ingredients II: subdifferentials

For \(\varphi : X \to \mathbb{R}_\infty \) convex and lsc, we define

- \(\text{Dom}\varphi := \{x : \varphi(x) < \infty\} \), and

we say that \(\varphi \) is proper when \(\text{Dom}\varphi \neq \emptyset \).

- the subdifferential of \(\varphi \) is the multivalued mapping \(\partial\varphi : X \rightrightarrows X^* \) defined by

\[
\partial\varphi(x) := \{x^* \in X^* : \varphi(y) - \varphi(x) \geq \langle x^*, y - x \rangle, \forall y \in X\},
\]

when \(x \in \text{Dom}\varphi \). Otherwise \(\partial\varphi(x) = \emptyset \).
Main Ingredients II: subdifferentials

For \(\varphi : X \to \mathbb{R}_\infty \) convex and lsc, we define

- \(\text{Dom}\varphi := \{ x : \varphi(x) < \infty \} \), and
- we say that \(\varphi \) is proper when \(\text{Dom}\varphi \neq \emptyset \).
- the subdifferential of \(\varphi \) is the multivalued mapping \(\partial \varphi : X \rightrightarrows X^* \) defined by

\[
\partial \varphi(x) := \{ x^* \in X^* : \varphi(y) - \varphi(x) \geq \langle x^*, y - x \rangle, \forall y \in X \},
\]

when \(x \in \text{Dom}\varphi \). Otherwise \(\partial \varphi(x) = \emptyset \).
Fenchel Young inequality

Let \(\varphi : X \to \mathbb{R}_\infty \) be convex and lsc, \(\varphi^* : X^* \to \mathbb{R}_\infty \)

\[
\varphi^*(v) := \sup_{x \in X} \{ \langle x, v \rangle - \varphi(x) \}
\]

is the \textit{conjugate of} \(\varphi \). The \textit{Fenchel Young inequality} states

\[
\varphi(x) + \varphi^*(v) \geq \langle x, v \rangle, \quad \forall \ x \in X, \ v \in X^*
\]

\[
\varphi(x) + \varphi^*(v) = \langle x, v \rangle, \quad \iff \quad v \in \partial \varphi(x).
\]

Notation:

\[
\varphi^{FY}(x, v) := \varphi(x) + \varphi^*(v)
\]
Fitzpatrick Theory: the family $\mathcal{H}(T)$

In 1988 Fitzpatrick defined the family $\mathcal{H}(T)$ consisting of all $h : X \times X^* \to \mathbb{R}_\infty$ convex and lsc such that:

\[
\begin{align*}
 h(x, v) &\geq \langle x, v \rangle, \quad \forall \ x \in X, \ v \in X^* \\
 h(x, v) &= \langle x, v \rangle, \iff \ v \in T(x).
\end{align*}
\]

Given v this reformulates the monotone inclusion as an optimization problem in X: Find x such that

\[
h(x, v) = 0 = \min_x h(\cdot, v)
\]
In 1988 Fitzpatrick defined the family $\mathcal{H}(T)$ consisting of all $h : X \times X^* \to \mathbb{R}_\infty$ convex and lsc such that:

$$
 h(x, v) \geq \langle x, v \rangle, \quad \forall \ x \in X, \ v \in X^*
$$

$$
 h(x, v) = \langle x, v \rangle, \quad \iff \quad v \in T(x).
$$

Given v this reformulates the monotone inclusion as an optimization problem in X: Find x such that

$$
 h(x, v) = 0 = \min_x h(\cdot, v)
$$
Fitzpatrick Theory: the family $\mathcal{H}(T)$

In 1988 Fitzpatrick defined the family $\mathcal{H}(T)$ consisting of all $h : X \times X^* \rightarrow \mathbb{R}_\infty$ convex and lsc such that:

$$
\begin{align*}
 h(x, v) &\geq \langle x, v \rangle, \quad \forall \ x \in X, \ v \in X^* \\
 h(x, v) &\ = \langle x, v \rangle, \quad \iff \ v \in T(x).
\end{align*}
$$

Given v this reformulates the monotone inclusion as an optimization problem in X: Find x such that

$$
 h(x, v) = 0 = \min_x h(\cdot, v)
$$
A key member of $\mathcal{H}(T)$

Fitzpatrick defined $\mathcal{F}_T : X \times X^* \rightarrow \mathbb{R}_\infty$ as

$$\mathcal{F}_T(x, x^*) := \sup_{(y, y^*) \in G(T)} \langle y, x^* \rangle + \langle x - y, y^* \rangle$$

which verifies

- $\mathcal{F}_T \in \mathcal{H}(T)$
- $\mathcal{F}_T \leq h \leq (\mathcal{F}_T)^* =: \sigma_T$ for all $h \in \mathcal{H}(T)$

Historical note: N.V.Krylov defined in 1980 \mathcal{F}_T for T point-to-point monotone in finite dimensions.
A key member of $\mathcal{H}(T)$

Fitzpatrick defined $\mathcal{F}_T : X \times X^* \to \mathbb{R}_\infty$ as

$$
\mathcal{F}_T(x, x^*) := \sup_{(y,y) \in G(T)} \langle y, x^* \rangle + \langle x - y, y^* \rangle
$$

which verifies

- $\mathcal{F}_T \in \mathcal{H}(T)$
- $\mathcal{F}_T \leq h \leq (\mathcal{F}_T)^* =: \sigma_T$ for all $h \in \mathcal{H}(T)$

Historical note: N.V.Krylov defined in 1980 \mathcal{F}_T for T point-to-point monotone in finite dimensions.
A key member of $\mathcal{H}(T)$

Fitzpatrick defined $\mathcal{F}_T : X \times X^* \rightarrow \mathbb{R}_\infty$ as

$$\mathcal{F}_T(x, x^*) := \sup_{(y, y^*) \in G(T)} \langle y, x^* \rangle + \langle x - y, y^* \rangle$$

which verifies

- $\mathcal{F}_T \in \mathcal{H}(T)$
- $\mathcal{F}_T \leq h \leq (\mathcal{F}_T)^* =: \sigma_T$ for all $h \in \mathcal{H}(T)$

Historical note: N.V. Krylov defined in 1980 \mathcal{F}_T for T point-to-point monotone in finite dimensions.
A key member of $\mathcal{H}(T)$

Fitzpatrick defined $\mathcal{F}_T : X \times X^* \to \mathbb{R}_\infty$ as

$$\mathcal{F}_T(x, x^*) := \sup_{(y, y^*) \in \mathcal{G}(T)} \langle y, x^* \rangle + \langle x - y, y^* \rangle$$

which verifies

- $\mathcal{F}_T \in \mathcal{H}(T)$
- $\mathcal{F}_T \leq h \leq (\mathcal{F}_T)^* =: \sigma_T$ for all $h \in \mathcal{H}(T)$

Historical note: N.V.Krylov defined in 1980 \mathcal{F}_T for T point-to-point monotone in finite dimensions.
Main Ingredients III: enlargement of the subdifferential

For $\varphi : X \to \mathbb{R}_\infty$ convex, lsc, let $\varepsilon \geq 0$, then $\partial_\varepsilon \varphi : X \rightrightarrows X^*$ is

$$
\partial_\varepsilon \varphi (x) := \{ x^* \in X^* : \varphi(y) - \varphi(x) \geq \langle x^*, y-x \rangle - \varepsilon, \forall y \in X \},
$$

if $x \in \text{Dom} \varphi$. Otherwise, $\partial_\varepsilon \varphi (x) = \emptyset$.

$\tilde{\partial} \varphi (\varepsilon, x) := \partial_\varepsilon \varphi (x)$ Brøndsted-Rockafellar enlargement (1965)

$\tilde{\partial} \varphi$ characterized by Fenchel Young ineq.:

$$
\langle x, v \rangle \leq \varphi^{FY} (x, v) = \varphi(x) + \varphi^*(v) \leq \langle x, v \rangle + \varepsilon \iff v \in \tilde{\partial} \varphi (\varepsilon, x).
$$
Main Ingredients III: enlargement of the subdifferential

For $\varphi : X \to \mathbb{R}_\infty$ convex, lsc, let $\epsilon \geq 0$, then $\partial_\epsilon \varphi : X \rightrightarrows X^*$ is

$$\partial_\epsilon \varphi(x) := \{x^* \in X^* : \varphi(y) - \varphi(x) \geq \langle x^*, y-x \rangle - \epsilon, \forall y \in X\},$$

if $x \in \text{Dom}\varphi$. Otherwise, $\partial_\epsilon \varphi(x) = \emptyset$.

$\tilde{\partial}\varphi(\epsilon, x) := \partial_\epsilon \varphi(x)$ Brøndsted-Rockafellar enlargement (1965)

$\tilde{\partial}\varphi$ characterized by Fenchel Young ineq.:

$$\langle x, v \rangle \leq \varphi^{FY}(x, v) = \varphi(x) + \varphi^*(v) \leq \langle x, v \rangle + \epsilon \iff v \in \tilde{\partial}\varphi(\epsilon, x).$$
Main Ingredients III: enlargement of the subdifferential

For \(\varphi : X \rightarrow \mathbb{R}_\infty \) convex, lsc, let \(\varepsilon \geq 0 \), then \(\partial_\varepsilon \varphi : X \rightrightarrows X^* \) is

\[
\partial_\varepsilon \varphi(x) := \{ x^* \in X^* : \varphi(y) - \varphi(x) \geq \langle x^*, y - x \rangle - \varepsilon, \quad \forall y \in X \},
\]

if \(x \in \text{Dom}\varphi \). Otherwise, \(\partial_\varepsilon \varphi(x) = \emptyset \).

\(\bar{\partial}\varphi(\varepsilon, x) := \partial_\varepsilon \varphi(x) \) Brøndsted-Rockafellar enlargement (1965)

\(\bar{\partial}\varphi \) characterized by \textit{Fenchel Young ineq.}:

\[
\langle x, v \rangle \leq \varphi^{FY}(x, v) = \varphi(x) + \varphi^*(v) \leq \langle x, v \rangle + \varepsilon \iff v \in \bar{\partial}\varphi(\varepsilon, x).
\]
Main Ingredients III: enlargement of the subdifferential

For $\varphi : X \to \mathbb{R}_\infty$ convex, lsc, let $\varepsilon \geq 0$, then $\partial_\varepsilon \varphi : X \rightrightarrows X^*$ is

$$
\partial_\varepsilon \varphi (x) := \{ x^* \in X^* : \varphi(y) - \varphi(x) \geq \langle x^*, y - x \rangle - \varepsilon, \ \forall \ y \in X \},
$$

if $x \in \text{Dom} \varphi$. Otherwise, $\partial_\varepsilon \varphi (x) = \emptyset$.

$\tilde{\partial} \varphi (\varepsilon, x) := \partial_\varepsilon \varphi (x)$ Brøndsted-Rockafellar enlargement (1965)

$\tilde{\partial} \varphi$ characterized by Fenchel Young ineq.:

$$
\langle x, v \rangle \leq \varphi^{FY} (x, v) = \varphi (x) + \varphi^* (v) \leq \langle x, v \rangle + \varepsilon \iff v \in \tilde{\partial} \varphi (\varepsilon, x).
$$
The family $E(T)$ of enlargements of T

$E : \mathbb{R}_+ \times X \Rightarrow X^*$ is in $E(T)$ when

(E_1) $T(x) \subset E(\varepsilon, x)$ for all $\varepsilon \geq 0, x \in X$;

(E_2) If $0 \leq \varepsilon_1 \leq \varepsilon_2$, then $E(\varepsilon_1, x) \subset E(\varepsilon_2, x)$ for all $x \in X$;

(E_3) The transportation formula holds: Whenever $v^1 \in E(\varepsilon_1, x^1), v^2 \in E(\varepsilon_2, x^2), \alpha_1, \alpha_2 \geq 0, \alpha_1 + \alpha_2 = 1,$

\[
\bar{x} := \alpha_1 x^1 + \alpha_2 x^2, \quad \bar{v} := \alpha_1 v^1 + \alpha_2 v^2 \text{ and }
\]

\[
\bar{\varepsilon} := \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2 + \alpha_1 \alpha_2 \langle v^1 - v^2, x^1 - x^2 \rangle,
\]

then $\bar{\varepsilon} \geq 0$ and $\bar{v} \in E(\bar{\varepsilon}, \bar{x})$.

Example: $\partial \varphi \in E(\partial \varphi)$
The family $\mathcal{E}(T)$ of enlargements of T

$E : \mathbb{R}_+ \times X \Rightarrow X^*$ is in $\mathcal{E}(T)$ when

(E_1) $T(x) \subset E(\varepsilon, x)$ for all $\varepsilon \geq 0, x \in X$;

(E_2) If $0 \leq \varepsilon_1 \leq \varepsilon_2$, then $E(\varepsilon_1, x) \subset E(\varepsilon_2, x)$ for all $x \in X$;

(E_3) The transportation formula holds: Whenever $v^1 \in E(\varepsilon_1, x^1), v^2 \in E(\varepsilon_2, x^2), \alpha_1, \alpha_2 \geq 0, \alpha_1 + \alpha_2 = 1, \bar{x} := \alpha_1 x^1 + \alpha_2 x^2, \bar{v} := \alpha_1 v^1 + \alpha_2 v^2$ and $\bar{\varepsilon} := \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2 + \alpha_1 \alpha_2 \langle v^1 - v^2, x^1 - x^2 \rangle$, then $\bar{\varepsilon} \geq 0$ and $\bar{v} \in E(\bar{\varepsilon}, \bar{x})$.

Example: $\partial \varphi \in \mathcal{E}(\partial \varphi)$
The family $\mathbb{E}(T)$ of enlargements of T

$E : \mathbb{R}_+ \times X \Rightarrow X^*$ is in $\mathbb{E}(T)$ when

(E_1) $T(x) \subset E(\varepsilon, x)$ for all $\varepsilon \geq 0, x \in X$;

(E_2) If $0 \leq \varepsilon_1 \leq \varepsilon_2$, then $E(\varepsilon_1, x) \subset E(\varepsilon_2, x)$ for all $x \in X$;

(E_3) The transportation formula holds: Whenever $v^1 \in E(\varepsilon_1, x^1), v^2 \in E(\varepsilon_2, x^2), \alpha_1, \alpha_2 \geq 0, \alpha_1 + \alpha_2 = 1$,

$\bar{x} := \alpha_1 x^1 + \alpha_2 x^2, \bar{v} := \alpha_1 v^1 + \alpha_2 v^2$ and

$\bar{\varepsilon} := \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2 + \alpha_1 \alpha_2 \langle v^1 - v^2, x^1 - x^2 \rangle$, then

$\bar{\varepsilon} \geq 0$ and $\bar{v} \in E(\bar{\varepsilon}, \bar{x})$.

Example: $\partial \varphi \in \mathbb{E}(\partial \varphi)$
The family $\mathcal{E}(T)$ of enlargements of T

$E : \mathbb{R}_+ \times X \Rightarrow X^*$ is in $\mathcal{E}(T)$ when

(E_1) $T(x) \subset E(\varepsilon, x)$ for all $\varepsilon \geq 0, x \in X$;

(E_2) If $0 \leq \varepsilon_1 \leq \varepsilon_2$, then $E(\varepsilon_1, x) \subset E(\varepsilon_2, x)$ for all $x \in X$;

(E_3) The transportation formula holds: Whenever

$v^1 \in E(\varepsilon_1, x^1), v^2 \in E(\varepsilon_2, x^2)$, $\alpha_1, \alpha_2 \geq 0, \alpha_1 + \alpha_2 = 1$,

$\bar{x} := \alpha_1 x^1 + \alpha_2 x^2$, $\bar{v} := \alpha_1 v^1 + \alpha_2 v^2$ and

$\bar{\varepsilon} := \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2 + \alpha_1 \alpha_2 \langle v^1 - v^2, x^1 - x^2 \rangle$, then

\[\bar{\varepsilon} \geq 0 \text{ and } \bar{v} \in E(\bar{\varepsilon}, \bar{x}). \]

Example: $\partial \varphi \in \mathcal{E}(\partial \varphi)$
The family $E(T)$ of enlargements of T

$E : \mathbb{R}_+ \times X \Rightarrow X^*$ is in $E(T)$ when

(E_1) $T(x) \subset E(\varepsilon, x)$ for all $\varepsilon \geq 0, x \in X$;

(E_2) If $0 \leq \varepsilon_1 \leq \varepsilon_2$, then $E(\varepsilon_1, x) \subset E(\varepsilon_2, x)$ for all $x \in X$;

(E_3) The transportation formula holds: Whenever $v^1 \in E(\varepsilon_1, x^1), v^2 \in E(\varepsilon_2, x^2), \alpha_1, \alpha_2 \geq 0, \alpha_1 + \alpha_2 = 1,$

$\bar{x} := \alpha_1 x^1 + \alpha_2 x^2, \bar{v} := \alpha_1 v^1 + \alpha_2 v^2$ and

$\bar{\varepsilon} := \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2 + \alpha_1 \alpha_2 \langle v^1 - v^2, x^1 - x^2 \rangle$, then

$\bar{\varepsilon} \geq 0$ and $\bar{v} \in E(\bar{\varepsilon}, \bar{x})$.

Example: $\partial \varphi \in E(\partial \varphi)$
The family $\mathbb{E}(T)$ of enlargements of T

$E : \mathbb{R}^+ \times X \Rightarrow X^*$ is in $\mathbb{E}(T)$ when

(E_1) $T(x) \subset E(\varepsilon, x)$ for all $\varepsilon \geq 0, x \in X$;

(E_2) If $0 \leq \varepsilon_1 \leq \varepsilon_2$, then $E(\varepsilon_1, x) \subset E(\varepsilon_2, x)$ for all $x \in X$;

(E_3) The transportation formula holds: Whenever

$v^1 \in E(\varepsilon_1, x^1), \ v^2 \in E(\varepsilon_2, x^2), \alpha_1, \alpha_2 \geq 0, \ \alpha_1 + \alpha_2 = 1,

\bar{x} := \alpha_1 x^1 + \alpha_2 x^2, \bar{v} := \alpha_1 v^1 + \alpha_2 v^2$ and

$\bar{\varepsilon} := \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2 + \alpha_1 \alpha_2 \langle v^1 - v^2, x^1 - x^2 \rangle$, then

$\bar{\varepsilon} \geq 0$ and $\bar{v} \in E(\bar{\varepsilon}, \bar{x})$.

Example: $\partial\varphi \in \mathbb{E}(\partial\varphi)$
From enlargements to convex functions:

\[(E_3) \iff \tilde{G}(E) \text{ convex,}\]

where

\[
G(E) := \{ (x, v, \varepsilon) : v \in E(\varepsilon, x) \}
\]

\[
\tilde{G}(E) := \{ (x, v, \varepsilon + \langle x, v \rangle) : v \in E(\varepsilon, x) \}
\]
From $\mathcal{E}(T)$ to $\mathcal{H}(T)$

$E \in Enl(T) \iff \tilde{G}(E)$ is the \begin{cases} \text{epigraph of a lsc. convex function} \\ \text{on } X \times X^* \end{cases}

This convex function is given by

$$h_E(x, v) := \inf \{ t : (x, v, t) \in \tilde{G}(E) \}$$

Moreover, $h_E \in \mathcal{H}(T)$ for all $E \in \mathcal{E}(T)$!
From $\mathbb{E}(T)$ to $\mathcal{H}(T)$

$E \in \text{Enl}(T) \quad \iff \quad \tilde{G}(E)$ is the \begin{align*}
\text{epigraph of a lsc.} \\
\text{convex function} \\
\text{on } X \times X^*.
\end{align*}

This convex function is given by

$$h_E(x, v) := \inf \{ t : (x, v, t) \in \tilde{G}(E) \}$$

Moreover, $h_E \in \mathcal{H}(T)$ for all $E \in \mathbb{E}(T)$!
From $\mathcal{E}(T)$ to $\mathcal{H}(T)$

$E \in \text{Enl}(T) \iff \tilde{G}(E)$ is the epigraph of a lsc. convex function on $X \times X^*$. This convex function is given by

$$h_E(x, v) := \inf\{ t : (x, v, t) \in \tilde{G}(E) \}$$

Moreover, $h_E \in \mathcal{H}(T)$ for all $E \in \mathcal{E}(T)$!
From $\mathcal{E}(T)$ to $\mathcal{H}(T)$

$E \in \text{Enl}(T) \iff \tilde{G}(E)$ is the \{ epigraph of a lsc. convex function on $X \times X^*$.

This convex function is given by

$$h_E(x, v) := \inf \{ t : (x, v, t) \in \tilde{G}(E) \}$$

Moreover, $h_E \in \mathcal{H}(T)$ for all $E \in \mathcal{E}(T)$!
Given $h \in \mathcal{H}(T)$ define $L^h : \mathbb{R}_+ \times X \rightrightarrows X^*$ as

$$L^h(\varepsilon, x) := \{ v \in X^* : h(x, v) \leq \langle x, v \rangle + \varepsilon \}$$

Then $L^h \in \mathcal{E}(T)$ for all $h \in \mathcal{H}(T)$!
From $\mathcal{H}(T)$ to $\mathbb{E}(T)$

Given $h \in \mathcal{H}(T)$ define $L^h : \mathbb{R}_+ \times X \rightrightarrows X^*$ as

$$L^h(\varepsilon, x) := \{ v \in X^* : h(x, v) \leq \langle x, v \rangle + \varepsilon \}$$

Then $L^h \in \mathbb{E}(T)$ for all $h \in \mathcal{H}(T)$!
From $\mathcal{H}(T)$ to $\mathbb{E}(T)$

Given $h \in \mathcal{H}(T)$ define $L^h : \mathbb{R}_+ \times X \rightrightarrows X^*$ as

$$L^h(\varepsilon, x) := \{ v \in X^* : h(x, v) \leq \langle x, v \rangle + \varepsilon \}$$

Then $L^h \in \mathbb{E}(T)$ for all $h \in \mathcal{H}(T)$!
From $\mathcal{H}(T)$ to $\mathcal{E}(T)$

Given $h \in \mathcal{H}(T)$ define $L^h : \mathbb{R}_+ \times X \rightrightarrows X^*$ as

$$L^h(\varepsilon, x) := \{v \in X^* : h(x, v) \leq \langle x, v \rangle + \varepsilon\}$$

Then $L^h \in \mathcal{E}(T)$ for all $h \in \mathcal{H}(T)$!

$\mathcal{H}(T) \leftrightarrow \mathcal{E}(T)$

Case $T = \partial \varphi$

Recall $\varphi^{FY}(x, v) = \varphi(x) + \varphi^*(v)$, then $\varphi^{FY} \in \mathcal{H}(\partial \varphi)$
Extreme members in the families

\(\mathcal{H}(T) \) has a smallest and a largest element

\[\mathcal{F}_T \leq h \leq \sigma_T = (\mathcal{F}_T)^*, \quad \mathbb{E}(T) \text{ has largest element:} \]

\[T^{BE}(\varepsilon, x) := \{ v \in X^* : \langle x - y, v - u \rangle \geq -\varepsilon, \forall (y, u) \in G(T) \}, \]

and smallest \(T^{SE}(\varepsilon, x) = \bigcap_{E \in \mathbb{E}(T)} E(\varepsilon, x), \)

Related through \(L^{\mathcal{F}_T} = T^{BE}, \) and \(L^{\sigma_T} = T^{SE} \)

\[h_{T^{SE}} = \sigma_T, \text{ and } h_{T^{BE}} = \mathcal{F}_T \]

Question: Can we identify a property that singles out “nice” enlargements?
Extreme members in the families

\(\mathcal{H}(T) \) has a smallest and a largest element
\(\mathcal{F}_T \leq h \leq \sigma_T = (\mathcal{F}_T)^* \), \(\mathbb{E}(T) \) has largest element:

\[T^{BE}(\varepsilon, x) := \{ v \in X^* : \langle x - y, v - u \rangle \geq -\varepsilon, \forall (y, u) \in G(T) \}, \]

and smallest \(T^{SE}(\varepsilon, x) = \bigcap_{E \in \mathbb{E}(T)} E(\varepsilon, x) \),

Related through \(L^{\mathcal{F}_T} = T^{BE} \), and \(L^{\sigma_T} = T^{SE} \)

\(h_{T^{SE}} = \sigma_T \), and \(h_{T^{BE}} = \mathcal{F}_T \)

Question: Can we identify a property that singles out “nice” enlargements?
Extreme members in the families

\(\mathcal{H}(T) \) has a smallest and a largest element

\[\mathcal{F}_T \leq h \leq \sigma_T = (\mathcal{F}_T)^*, \mathcal{E}(T) \) has largest element:

\[T^{BE}(\varepsilon, x) := \{ v \in X^* : \langle x - y, v - u \rangle \geq -\varepsilon, \forall (y, u) \in G(T) \}, \]

and smallest \(T^{SE}(\varepsilon, x) = \cap_{E \in \mathcal{E}(T)} E(\varepsilon, x) \),

Related through \(L^{\mathcal{F}_T} = T^{BE} \), and \(L^{\sigma_T} = T^{SE} \)

\[h_{T^{SE}} = \sigma_T \], and \(h_{T^{BE}} = \mathcal{F}_T \)

Question: Can we identify a property that singles out “nice” enlargements?
Extreme members in the families

\[\mathcal{H}(T) \] has a smallest and a largest element
\[F_T \leq h \leq \sigma_T = (F_T)^*, \quad \mathbb{E}(T) \] has largest element:

\[T^{BE}(\varepsilon, x) := \{ v \in X^* : \langle x - y, v - u \rangle \geq -\varepsilon, \forall (y, u) \in \mathcal{G}(T) \}, \]

and smallest \[T^{SE}(\varepsilon, x) = \bigcap_{E \in \mathbb{E}(T)} E(\varepsilon, x), \]

Related through \[L^{F_T} = T^{BE}, \quad \text{and} \quad L^{\sigma_T} = T^{SE} \]

\[h_{T^{SE}} = \sigma_T, \quad \text{and} \quad h_{T^{BE}} = F_T \]

Question: Can we identify a property that singles out “nice” enlargements?
Extreme members in the families

\(\mathcal{H}(T) \) has a smallest and a largest element

\[\mathcal{F}_T \leq h \leq \sigma_T = (\mathcal{F}_T)^*, \quad \mathbb{E}(T) \] has largest element:

\[T^{BE}(\varepsilon, x) := \{ v \in X^* : \langle x - y, v - u \rangle \geq -\varepsilon, \quad \forall (y, u) \in G(T) \}, \]

and smallest \(T^{SE}(\varepsilon, x) = \cap_{E \in \mathbb{E}(T)} E(\varepsilon, x) \),

Related through \(L^{\mathcal{F}_T} = T^{BE} \), and \(L^{\sigma_T} = T^{SE} \)

\[h_{T^{SE}} = \sigma_T, \quad \text{and} \quad h_{T^{BE}} = \mathcal{F}_T \]

Question: Can we identify a property that singles out “nice” enlargements?
Additivity

- \(E \in \mathbb{E}(T) \) is additive, if

\[
\langle v_1 - v_2, x_1 - x_2 \rangle \geq - (\varepsilon_1 + \varepsilon_2).
\]

Set \(\mathbb{E}_a(T) := \{ E \in \mathbb{E}(T) : E \text{ additive} \} \)

\(\partial \varphi \) is additive, i.e., \(\partial \varphi \in \mathbb{E}_a(\partial \varphi) \)

\(T^{SE} \) is always additive, but \(T^{BE} \) may not!

Additivity detects those elements in \(\mathbb{E}(T) \) which have something in common with \(\partial \varphi \)!
Additivity

- $E \in \mathbb{E}(T)$ is *additive*, if

$$\langle v_1 - v_2, x_1 - x_2 \rangle \geq -(\varepsilon_1 + \varepsilon_2).$$

Set $\mathbb{E}_a(T) := \{E \in \mathbb{E}(T) : E \text{ additive}\}$

$\partial \varphi$ is additive, i.e., $\partial \varphi \in \mathbb{E}_a(\partial \varphi)$

T^{SE} is always additive, but T^{BE} may not!

Additivity detects those elements in $\mathbb{E}(T)$ which have something in common with $\partial \varphi$!
Additively

- $E \in \mathbb{E}(T)$ is \textit{additive}, if

\[
\langle v_1 - v_2, x_1 - x_2 \rangle \geq -(\varepsilon_1 + \varepsilon_2).
\]

Set $\mathbb{E}_a(T) := \{ E \in \mathbb{E}(T) : E \text{ additive} \}$

$\partial \varphi$ is additive, i.e., $\partial \varphi \in \mathbb{E}_a(\partial \varphi)$

T^{SE} is always additive, but T^{BE} may not!

Additivity detects those elements in $\mathbb{E}(T)$ which have something in common with $\partial \varphi$!
Additivity

$E \in \mathbb{E}(T)$ is additive, if

$$\nu_1 \in E(\varepsilon_1, x_1), \; \nu_2 \in E(\varepsilon_1, x_2)$$

$$\langle \nu_1 - \nu_2, x_1 - x_2 \rangle \geq - (\varepsilon_1 + \varepsilon_2).$$

Set $\mathbb{E}_a(T) := \{ E \in \mathbb{E}(T) : E \text{ additive} \}$

$\partial \varphi$ is additive, i.e., $\partial \varphi \in \mathbb{E}_a(\partial \varphi)$

T^{SE} is always additive, but T^{BE} may not!

Additivity detects those elements in $\mathbb{E}(T)$ which have something in common with $\partial \varphi$!
Additivity

- $E \in \mathbb{E}(T)$ is additive, if

\[
\langle v_1 - v_2, x_1 - x_2 \rangle \geq -(\varepsilon_1 + \varepsilon_2).
\]

Set $\mathbb{E}_a(T) := \{ E \in \mathbb{E}(T) : E \text{ additive} \}$

$\partial \varphi$ is additive, i.e., $\partial \varphi \in \mathbb{E}_a(\partial \varphi)$

T^{SE} is always additive, but T^{BE} may not!

Additivity detects those elements in $\mathbb{E}(T)$ which have something in common with $\partial \varphi$!
Additivity

- \(E \in \mathbb{E}(T) \) is **additive**, if

\[
\langle v_1 - v_2, x_1 - x_2 \rangle \geq -(\varepsilon_1 + \varepsilon_2).
\]

Set \(\mathbb{E}_a(T) := \{ E \in \mathbb{E}(T) : E \text{ additive} \} \)

\(\partial \phi \) is additive, i.e., \(\partial \phi \in \mathbb{E}_a(\partial \phi) \)

\(T^{SE} \) is always additive, but \(T^{BE} \) may not!

Additivity detects those elements in \(\mathbb{E}(T) \) which have something in common with \(\partial \phi \)!
Additivtty

$E \in \mathbb{E}(T)$ is \textit{additive}, if

$$\langle v_1 - v_2, x_1 - x_2 \rangle \geq - (\varepsilon_1 + \varepsilon_2).$$

Set $\mathbb{E}_a(T) := \{ E \in \mathbb{E}(T) : E \text{ additive} \}$

$\partial \varphi$ is \textit{additive}, i.e., $\partial \varphi \in \mathbb{E}_a(\partial \varphi)$

T^{SE} is always \textit{additive}, but T^{BE} may not!

Additivity detects those elements in $\mathbb{E}(T)$ which have something in common with $\partial \varphi$!
Additivity as a mutual relation/maximal property

- \(E \in \mathbb{E}_a(T) \) is **maximally additive** *(max-add, for short)*, if

 \[
 \exists \hat{E} \in \mathbb{E}_a(T) : E(\varepsilon, x) \subset \hat{E}(\varepsilon, x), \forall \varepsilon \geq 0, \forall x \in X
 \]

 \[
 \Downarrow

 E = \hat{E}
 \]

- \(E_1, E_2 \in \mathbb{E}(T) \) are **mutually additive**, if

 \[
 v_1 \in E_1(\varepsilon_1, x_1), v_2 \in E_2(\varepsilon_1, x_2)
 \]

 \[
 \Downarrow

 \langle v_1 - v_2, x_1 - x_2 \rangle \geq -(\varepsilon_1 + \varepsilon_2).
 \]

 Denoted as \(E_1 \sim_a E_2 \implies E \sim_a E \) iff \(E \in \mathbb{E}_a(T) \)
Additivity as a mutual relation/maximal property

- \(E \in \mathbb{E}_a(T) \) is **maximally additive** (\textit{max-add}, for short), if

\[
\exists \hat{E} \in \mathbb{E}_a(T) : E(\varepsilon, x) \subset \hat{E}(\varepsilon, x), \forall \varepsilon \geq 0, \forall x \in X \quad \Downarrow \quad E = \hat{E}
\]

- \(E_1, E_2 \in \mathbb{E}(T) \) are **mutually additive**, if

\[
\begin{align*}
\nu_1 & \in E_1(\varepsilon_1, x_1), \nu_2 \in E_2(\varepsilon_1, x_2) \\
\Downarrow \\
\langle \nu_1 - \nu_2, x_1 - x_2 \rangle & \geq -(\varepsilon_1 + \varepsilon_2).
\end{align*}
\]

Denoted as \(E_1 \sim_a E_2 \implies E \sim_a E \iff E \in \mathbb{E}_a(T) \)
Additivity as a mutual relation/maximal property

- \(E \in \mathbb{E}_a(T) \) is **maximally additive** (\textit{max-add}, for short), if
 \[
 \exists \hat{E} \in \mathbb{E}_a(T) : E(\varepsilon, x) \subset \hat{E}(\varepsilon, x), \forall \varepsilon \geq 0, \forall x \in X \]
 \[
 \Downarrow \quad E = \hat{E} \]

- \(E_1, E_2 \in \mathbb{E}(T) \) are **mutually additive**, if
 \[
 v_1 \in E_1(\varepsilon_1, x_1), \quad v_2 \in E_2(\varepsilon_1, x_2) \]
 \[
 \Downarrow \quad \langle v_1 - v_2, x_1 - x_2 \rangle \geq -(\varepsilon_1 + \varepsilon_2). \]

 Denoted as \(E_1 \sim_a E_2 \quad \Rightarrow \quad E \sim_a E \text{ iff } E \in \mathbb{E}_a(T) \)
Additively as a mutual relation/maximal property

- \(E \in \mathbb{E}_a(T) \) is \textit{maximally additive} (\textit{max-add}, for short), if
 \[
 \exists \hat{E} \in \mathbb{E}_a(T) : E(\varepsilon, x) \subset \hat{E}(\varepsilon, x), \forall \varepsilon \geq 0, \forall x \in X
 \]
 \[
 \Downarrow
 E = \hat{E}
 \]

- \(E_1, E_2 \in \mathbb{E}(T) \) are \textit{mutually additive}, if
 \[
 v_1 \in E_1(\varepsilon_1, x_1), \ v_2 \in E_2(\varepsilon_1, x_2)
 \]
 \[
 \Downarrow
 \langle v_1 - v_2, x_1 - x_2 \rangle \geq - (\varepsilon_1 + \varepsilon_2).
 \]

Denoted as \(E_1 \sim_a E_2 \implies E \sim_a E \) iff \(E \in \mathbb{E}_a(T) \).
Additivity as a mutual relation/maximal property

- $E \in \mathbb{E}_a(T)$ is maximally additive (max-add, for short), if
 \[\exists \hat{E} \in \mathbb{E}_a(T) : E(\varepsilon, x) \subset \hat{E}(\varepsilon, x), \forall \varepsilon \geq 0, \forall x \in X \]
 \[\Downarrow \]
 \[E = \hat{E} \]

- $E_1, E_2 \in \mathbb{E}(T)$ are mutually additive, if
 \[v_1 \in E_1(\varepsilon_1, x_1), v_2 \in E_2(\varepsilon_1, x_2) \]
 \[\Downarrow \]
 \[\langle v_1 - v_2, x_1 - x_2 \rangle \geq - (\varepsilon_1 + \varepsilon_2). \]

Denoted as $E_1 \sim_a E_2 \implies E \sim_a E$ iff $E \in \mathbb{E}_a(T)$
Additivity as a mutual relation/maximal property

- $E \in \mathbb{E}_a(T)$ is **maximally additive** (*max-add*, for short), if
 \[
 \exists \hat{E} \in \mathbb{E}_a(T) : E(\varepsilon, x) \subset \hat{E}(\varepsilon, x), \forall \varepsilon \geq 0, \forall x \in X
 \]
 \[
 \downarrow
 \]
 \[
 E = \hat{E}
 \]

- $E_1, E_2 \in \mathbb{E}(T)$ are **mutually additive**, if
 \[
 v_1 \in E_1(\varepsilon_1, x_1), \ v_2 \in E_2(\varepsilon_1, x_2)
 \]
 \[
 \downarrow
 \]
 \[
 \langle v_1 - v_2, x_1 - x_2 \rangle \geq -(\varepsilon_1 + \varepsilon_2).
 \]

 Denoted as $E_1 \sim_a E_2 \implies E \sim_a E$ iff $E \in \mathbb{E}_a(T)$
Example of Max-Additivity

If $T = ∂φ$ then $\tilde{∂Φ}$ is max-add (Svaiter, 2000)

If T arbitrary, then T^{SE} is always additive, but not necessarily max-add!

Max-additivity detects those elements in $E_a(T)$ which have even more in common with $\tilde{∂φ}$!
Example of Max-Additivity

If $T = \partial \varphi$ then $\tilde{\partial} \varphi$ is max-add (Svaiter, 2000)

If T arbitrary, then T^{SE} is always additive, but not necessarily max-add!

Max-additivity detects those elements in $E_a(T)$ which have even more in common with $\tilde{\partial} \varphi$!
Motivation
Preliminaries
The family $\mathcal{H}(T)$
Enlargements of T
Case $T = \partial \varphi$

Additive enlargements
Mutual additivity
New enlargements

Example of Max-Additivity

If $T = \partial \varphi$ then $\tilde{\partial} \varphi$ is max-add (Svaiter, 2000)

If T arbitrary, then T^{SE} is always additive, but not necessarily max-add!

Max-additivity detects those elements in $E_a(T)$ which have even more in common with $\tilde{\partial} \varphi$!
Example of mutual additivity

If \(T \) arbitrary, then \(T^{SE} \) and \(T^{BE} \) are always mutually additive (Svaiter, 2000)

Questions: How to identify additive elements \(E(T) \)? How to identify max-add elements within \(E_a(T) \)? How to characterize mutual additivity?

We will address these using convex functions!
Let $f : X \times X^* \to \mathbb{R}_\infty$ be convex, Fitzpatrick (1988) defined $T_f : X \Rightarrow X^*$ as

$$T_f(x) := \{v \in X^* : (v, x) \in \partial f(x, v)\} \star$$

Fitzpatrick proved that T_f mon, and for T monotone and $f := \mathcal{F}_T$:

- $\forall x \in X, \ T(x) \subseteq T_{\mathcal{F}_T}(x)$.
- T maximal $\implies T = T_{\mathcal{F}_T}$.

Can recover T as a diagonal slice of the $\partial \mathcal{F}_T$!

Question: What happens if we use ∂f in \star? Can we still recover T?
From convex functions to T and viceversa

Let $f : X \times X^* \to \mathbb{R}_\infty$ be convex, Fitzpatrick (1988) defined $T_f : X \Rightarrow X^*$ as

$$T_f(x) := \{ v \in X^* : (v, x) \in \partial f(x, v) \}$$

Fitzpatrick proved that T_f mon, and for T monotone and $f := F_T$:

- $\forall x \in X$, $T(x) \subseteq T_{F_T}(x)$.
- T maximal $\implies T = T_{F_T}$

Can recover T as a diagonal slice of the ∂F_T!

Question: What happens if we use $\tilde{\partial}f$ in \star? Can we still recover T?
From convex functions to T and viceversa

Let $f : X \times X^* \to \mathbb{R}_\infty$ be convex, Fitzpatrick (1988) defined $T_f : X \Rightarrow X^*$ as

$$T_f(x) := \{v \in X^* : (v, x) \in \partial f(x, v)\} \quad \star$$

Fitzpatrick proved that T_f mon, and for T monotone and $f := \mathcal{F}_T$:

- $\forall x \in X, \ T(x) \subseteq T_{\mathcal{F}_T}(x)$.
- T maximal $\implies T = T_{\mathcal{F}_T}$

Can recover T as a diagonal slice of the $\partial \mathcal{F}_T$!

Question: What happens if we use $\tilde{\partial}f$ in \star? Can we still recover T?
From convex functions to T and viceversa

Let $f : X \times X^* \to \mathbb{R}_\infty$ be convex, Fitzpatrick (1988) defined $T_f : X \Rightarrow X^*$ as

$$T_f(x) := \{v \in X^* : (v, x) \in \partial f(x, v)\} \quad \star$$

Fitzpatrick proved that T_f mon, and for T monotone and $f := \mathcal{F}_T$:

- $\forall x \in X, \; T(x) \subseteq T_{\mathcal{F}_T}(x)$.
- T maximal $\implies T = T_{\mathcal{F}_T}$

Can recover T as a diagonal slice of the $\partial \mathcal{F}_T$!

Question: What happens if we use $\bar{\partial} f$ in \star?
Can we still recover T?
From convex functions to T and viceversa

Let $f : X \times X^* \to \mathbb{R}_\infty$ be convex, Fitzpatrick (1988) defined $T_f : X \Rightarrow X^*$ as

$$T_f(x) := \{ v \in X^* : (v, x) \in \partial f(x, v) \} \quad \star$$

Fitzpatrick proved that T_f mon, and for T monotone and $f := F_T$:

- $\forall x \in X$, $T(x) \subseteq T_{F_T}(x)$.
- T maximal $\implies T = T_{F_T}$

Can recover T as a diagonal slice of the ∂F_T!

Question: What happens if we use $\tilde{\partial} f$ in \star?
Can we still recover T?
From convex functions to T and viceversa

Let $f : X \times X^* \to \mathbb{R}_{\infty}$ be convex, Fitzpatrick (1988) defined $T_f : X \rightrightarrows X^*$ as

$$T_f(x) := \{ v \in X^* : (v, x) \in \partial f(x, v) \}$$

Fitzpatrick proved that T_f mon, and for T monotone and $f := \mathcal{F}_T$:

- $\forall x \in X, \ T(x) \subseteq T_{\mathcal{F}_T}(x)$.
- T maximal $\implies T = T_{\mathcal{F}_T}$

Can recover T as a diagonal slice of the $\partial \mathcal{F}_T$!

Question: What happens if we use $\tilde{\partial}f$ in \star? Can we still recover T?
From convex functions to T and viceversa

Let $f : X \times X^* \to \mathbb{R}_\infty$ be convex, Fitzpatrick (1988) defined $T_f : X \Rightarrow X^*$ as

$$T_f(x) := \{v \in X^* : (v, x) \in \partial f(x, v)\} \quad \star$$

Fitzpatrick proved that T_f mon, and for T monotone and $f := \mathcal{F}_T$:

- $\forall x \in X, \ T(x) \subseteq T_{\mathcal{F}_T}(x)$.
- T maximal $\implies T = T_{\mathcal{F}_T}$

Can recover T as a diagonal slice of the $\partial \mathcal{F}_T$!

Question: What happens if we use $\tilde{\partial}f$ in \star? Can we still recover T?
Let $h \in \mathcal{H}(T)$, define $\mathcal{J} : \mathcal{H}(T) \rightarrow \mathcal{H}(T)$ as

$$\mathcal{J}h(x, v) := h^*(v, x)$$

I.e., $\mathcal{J}h$ swaps the variables of h^*

Define $A : \mathcal{H}(T) \rightarrow \mathcal{H}(T)$ as

$$Ah := \frac{h + \mathcal{J}h}{2}$$

Fact: $Ah \in \mathcal{H}(T)$ if $h \in \mathcal{H}(T)$.
Let $h \in \mathcal{H}(T)$, define $\mathcal{J} : \mathcal{H}(T) \rightarrow \mathcal{H}(T)$ as

$$\mathcal{J}h(x, v) := h^*(v, x)$$

i.e., $\mathcal{J}h$ swaps the variables of h^*. Define $\mathcal{A} : \mathcal{H}(T) \rightarrow \mathcal{H}(T)$ as

$$\mathcal{A}h := \frac{h + \mathcal{J}h}{2}$$

Fact: $\mathcal{A}h \in \mathcal{H}(T)$ if $h \in \mathcal{H}(T)$.
An induced subfamily of enlargements

Let T be max-mon and fix $h \in \mathcal{H}(T)$. We define

\[\tilde{T}_h : \mathbb{R}_+ \times X \Rightarrow X^* \] as

\[\tilde{T}_h(\varepsilon, x) := \{ v \in X^* : (v, x) \in \partial h(2\varepsilon, x, v) \} \]

- $T_h(x) = \tilde{T}_h(0, x) = T$
- $\tilde{T}_h = L^A h$, so $\tilde{T}_h \in E(T)$.

Define $E_{\mathcal{H}}(T) := \{ E \in E(T) : E = \tilde{T}_h \text{ for some } h \in \mathcal{H}(T) \}$

Question: $E_{\mathcal{H}}(T)$ has special properties, not shared by other elements of $E(T)$?
An induced subfamily of enlargements

Let T be max-mon and fix $h \in \mathcal{H}(T)$. We define

$$
\tilde{T}_h : \mathbb{R}_+ \times X \Rightarrow X^* \text{ as }
$$

$$
\tilde{T}_h(\varepsilon, x) := \{ v \in X^* : (v, x) \in \partial h(2\varepsilon, x, v) \}
$$

- $T_h(x) = \tilde{T}_h(0, x) = T$
- $\tilde{T}_h = L^{Ah}$, so $\tilde{T}_h \in \mathcal{E}(T)$.

Define $\mathcal{E}_{\mathcal{H}}(T) := \{ E \in \mathcal{E}(T) : E = \tilde{T}_h \text{ for some } h \in \mathcal{H}(T) \}$

Question: $\mathcal{E}_{\mathcal{H}}(T)$ has special properties, not shared by other elements of $\mathcal{E}(T)$?
An induced subfamily of enlargements

Let T be max-mon and fix $h \in \mathcal{H}(T)$. We define

$$\tilde{T}_h : \mathbb{R}_+ \times X \Rightarrow X^*$$

as

$$\tilde{T}_h(\varepsilon, x) := \{ v \in X^* : (v, x) \in \tilde{\partial}h(2\varepsilon, x, v) \}$$

- $T_h(x) = \tilde{T}_h(0, x) = T$
- $\tilde{T}_h = L^{Ah}$, so $\tilde{T}_h \in E(T)$.

Define $E_{\mathcal{H}}(T) := \{ E \in E(T) : E = \tilde{T}_h \text{ for some } h \in \mathcal{H}(T) \}$

Question: $E_{\mathcal{H}}(T)$ has special properties, not shared by other elements of $E(T)$?
An induced subfamily of enlargements

Let \(T \) be max-mon and fix \(h \in \mathcal{H}(T) \). We define
\[
\tilde{\mathcal{T}}_h : \mathbb{R}_+ \times X \Rightarrow X^* \text{ as}
\]
\[
\tilde{\mathcal{T}}_h(\varepsilon, x) := \{ v \in X^* : (v, x) \in \partial\tilde{h}(2\varepsilon, x, v) \}
\]

- \(T_h(x) = \tilde{\mathcal{T}}_h(0, x) = T \)
- \(\tilde{\mathcal{T}}_h = L^{Ah} \), so \(\tilde{\mathcal{T}}_h \in \mathcal{E}(T) \).

Define \(\mathcal{E}_{\mathcal{H}}(T) := \{ E \in \mathcal{E}(T) : E = \tilde{\mathcal{T}}_h \text{ for some } h \in \mathcal{H}(T) \} \)

Question: \(\mathcal{E}_{\mathcal{H}}(T) \) has special properties, not shared by other elements of \(\mathcal{E}(T) \)?
An induced subfamily of enlargements

Let T be max-mon and fix $h \in \mathcal{H}(T)$. We define
\[\tilde{T}_h : \mathbb{R}_+ \times X \rightrightarrows X^* \]
\[\tilde{T}_h(\varepsilon, x) := \{ v \in X^* : (v, x) \in \partial h(2\varepsilon, x, v) \} \]

- $T_h(x) = \tilde{T}_h(0, x) = T$
- $\tilde{T}_h = L^{A_h}$, so $\tilde{T}_h \in \mathbb{E}(T)$.

Define $\mathbb{E}_{\mathcal{H}}(T) := \{ E \in \mathbb{E}(T) : E = \tilde{T}_h \text{ for some } h \in \mathcal{H}(T) \}$

Question: $\mathbb{E}_{\mathcal{H}}(T)$ has special properties, not shared by other elements of $\mathbb{E}(T)$?
An induced subfamily of enlargements

Let T be max-mon and fix $h \in \mathcal{H}(T)$. We define

$$\tilde{T}_h : \mathbb{R}_+ \times X \Rightarrow X^*$$

as

$$\tilde{T}_h(\varepsilon, x) := \{ v \in X^* : (v, x) \in \partial h(2\varepsilon, x, v) \}$$

- $T_h(x) = \tilde{T}_h(0, x) = T$
- $\tilde{T}_h = L^{Ah}$, so $\tilde{T}_h \in E(T)$.

Define $E_{\mathcal{H}}(T) := \{ E \in E(T) : E = \tilde{T}_h \text{ for some } h \in \mathcal{H}(T) \}$

Question: $E_{\mathcal{H}}(T)$ has special properties, not shared by other elements of $E(T)$?
Characterizing Mutual and Maximal Additivity

Let $E, E' \in \mathcal{E}(T)$, consider $h_E, h_{E'} \in \mathcal{H}(T)$ the corresponding functions (i.e., $E = L^{h_E}$ and $E' = L^{h_{E'}}$)

- $E \sim_a E'$ iff $\mathcal{J}h_E \leq h_{E'}$. Hence, $E \in \mathcal{E}_a(T)$ iff $\mathcal{J}h_E \leq h_E$.
- $h_E = \mathcal{J}h_E$ iff E is max-add

- In particular, $E \sim_a L^{\mathcal{J}h_E}$
- Since $L^{\mathcal{J}h_E}$ is the largest enlargement mutually additive with E, it is the “additive complement” of E.
- E is max-add iff it coincides with its additive complement.
Characterizing Mutual and Maximal Additivity

Let $E, E' \in \mathcal{E}(T)$, consider $h_E, h_{E'} \in \mathcal{H}(T)$ the corresponding functions (i.e., $E = L^{h_E}$ and $E' = L^{h_{E'}}$)

- $E \sim_a E'$ iff $\mathcal{J} h_E \leq h_{E'}$. Hence, $E \in \mathcal{E}_a(T)$ iff $\mathcal{J} h_E \leq h_E$.
- $h_E = \mathcal{J} h_E$ iff E is max-add

- In particular, $E \sim_a L^{\mathcal{J} h_E}$
- Since $L^{\mathcal{J} h_E}$ is the largest enlargement mutually additive with E, it is the “additive complement” of E.
- E is max-add iff it coincides with its additive complement.
Let $E, E' \in \mathbb{E}(T)$, consider $h_E, h_{E'} \in \mathcal{H}(T)$ the corresponding functions (i.e., $E = L^h_E$ and $E' = L^h_{E'}$)

- $E \sim_a E'$ iff $\mathcal{J}h_E \leq h_{E'}$. Hence, $E \in \mathbb{E}_a(T)$ iff $\mathcal{J}h_E \leq h_E$.
- $h_E = \mathcal{J}h_E$ iff E is max-add.

In particular, $E \sim_a L^{\mathcal{J}h_E}$.
- Since $L^{\mathcal{J}h_E}$ is the largest enlargement mutually additive with E, it is the “additive complement” of E.
- E is max-add iff it coincides with its additive complement.
Characterizing Mutual and Maximal Additivity

Let $E, E' \in \mathbb{E}(T)$, consider $h_E, h_{E'} \in \mathcal{H}(T)$ the corresponding functions (i.e., $E = L^{h_E}$ and $E' = L^{h_{E'}}$)

- $E \sim_a E'$ iff $\mathcal{J}h_E \leq h_{E'}$. Hence, $E \in \mathbb{E}_a(T)$ iff $\mathcal{J}h_E \leq h_E$.
- $h_E = \mathcal{J}h_E$ iff E is max-add

- In particular, $E \sim_a L^{\mathcal{J}h_E}$
- Since $L^{\mathcal{J}h_E}$ is the largest enlargement mutually additive with E, it is the “additive complement” of E.
- E is max-add iff it coincides with its additive complement.
Characterizing Mutual and Maximal Additivity

Let $E, E' \in \mathcal{E}(T)$, consider $h_E, h_{E'} \in \mathcal{H}(T)$ the corresponding functions (i.e., $E = L^{h_E}$ and $E' = L^{h_{E'}}$)

- $E \sim_a E'$ iff $\mathcal{J}h_E \leq h_{E'}$. Hence, $E \in \mathcal{E}_a(T)$ iff $\mathcal{J}h_E \leq h_E$.
- $h_E = \mathcal{J}h_E$ iff E is max-add

- In particular, $E \sim_a L^{\mathcal{J}h_E}$
- Since $L^{\mathcal{J}h_E}$ is the largest enlargement mutually additive with E, it is the “additive complement” of E.
- E is max-add iff it coincides with its additive complement.
Characterizing Mutual and Maximal Additivity

Let $E, E' \in E(T)$, consider $h_E, h_{E'} \in \mathcal{H}(T)$ the corresponding functions (i.e., $E = L^{h_E}$ and $E' = L^{h_{E'}}$)

- $E \sim_a E'$ iff $\mathcal{J} h_E \leq h_{E'}$. Hence, $E \in E_a(T)$ iff $\mathcal{J} h_E \leq h_E$.
- $h_E = \mathcal{J} h_E$ iff E is max-add

In particular, $E \sim_a L^{\mathcal{J} h_E}$

Since $L^{\mathcal{J} h_E}$ is the largest enlargement mutually additive with E, it is the “additive complement” of E.

E is max-add iff it coincides with its additive complement.
Taking conjugates in $\mathcal{H}(T)$ is order reversing, and its effect in $\mathbb{E}(T)$ is to map E into its additive complement.

Fixed points of \mathcal{J} correspond to max-add elements!
Relation w/previous facts

Recall $\varphi^{FY}(x, v) = \varphi(x) + \varphi^*(v)$, since $J \varphi^{FY} = \varphi^{FY}$ we confirm the fact that

$\partial \varphi$ is max-add

Previous result extends the known fact (Svaiter 2000):

$T^{SE} \sim_a T^{BE}$
Relation w/previous facts

Recall \(\varphi^{FY}(x, v) = \varphi(x) + \varphi^*(v) \), since \(J \varphi^{FY} = \varphi^{FY} \) we confirm the fact that

\[\partial \varphi \text{ is max-add} \]

Previous result extends the known fact (Svaiter 2000):

\[T^{SE} \sim_a T^{BE} \]
Recall $\varphi^{FY}(x, v) = \varphi(x) + \varphi^*(v)$, since $\mathcal{J}\varphi^{FY} = \varphi^{FY}$ we confirm the fact that

$\partial\varphi$ is max-add

Previous result extends the known fact (Svaiter 2000):

\[T^{SE} \sim_a T^{BE} \]
Recall $\varphi^{FY}(x, v) = \varphi(x) + \varphi^*(v)$, since $J \varphi^{FY} = \varphi^{FY}$ we confirm the fact that $\tilde{\partial}\varphi$ is max-add.

Previous result extends the known fact (Svaiter 2000):

$$T^{SE} \sim_a T^{BE}$$
New enlargements are additive

Let $h \in \mathcal{H}(T)$. The following hold:

1. $\tilde{T}_h \in \mathbb{E}_a(T)$

2. \tilde{T}_h is max-add iff $\mathcal{J} A h = A h$

3. Hence, if $\mathcal{J} h = h$ then \tilde{T}_h is max-add
New enlargements are additive

Let \(h \in \mathcal{H}(T) \). The following hold:

\begin{itemize}
 \item \(\tilde{T}_h \in \mathcal{E}_a(T) \)
 \item \(\tilde{T}_h \) is max-add iff \(\mathcal{J}Ah = Ah \)
 \item Hence, if \(\mathcal{J}h = h \) then \(\tilde{T}_h \) is max-add
\end{itemize}
New enlargements are additive

Let $h \in \mathcal{H}(T)$. The following hold:

1. $\tilde{T}_h \in \mathbb{E}_a(T)$

2. \tilde{T}_h is max-add iff $\mathcal{J} Ah = Ah$

Hence, if $\mathcal{J} h = h$ then \tilde{T}_h is max-add
New enlargements are additive

Let \(h \in \mathcal{H}(T) \). The following hold:

1. \(\mathcal{T}_h \in \mathbb{E}_a(T) \)
2. \(\mathcal{T}_h \) is max-add iff \(\mathcal{J} A h = A h \)

Hence, if \(\mathcal{J} h = h \) then \(\mathcal{T}_h \) is max-add
New enlargements are additive

Let $h \in \mathcal{H}(T)$. The following hold:

1. $\tilde{T}_h \in E_a(T)$

2. \tilde{T}_h is max-add iff $\mathcal{J}Ah = Ah$

3. Hence, if $\mathcal{J}h = h$ then \tilde{T}_h is max-add
Fix $h \in \mathcal{H}(\partial \varphi)$ and $h \leq \varphi + \varphi^* = \varphi^{FY}$

1. $\forall \varepsilon > 0$, $x \in \text{Dom} \varphi$ we have
 $$\bar{T}_h(\varepsilon/2, x) \subseteq \bar{\partial \varphi}(\varepsilon, x)$$

2. If $h = \varphi^{FY}$ we must have $\bar{\partial \varphi} = \bar{T}_{\varphi^{FY}}$.
3. If $h = F_{\partial \varphi}$
 $$\bar{T}_{F_{\partial \varphi}}(\varepsilon/2, x) \subseteq \bar{\partial \varphi}(\varepsilon, x)$$

Hence, we can use the Fitzpatrick function $F_{\partial \varphi}$ to obtain an enlargement smaller than $\bar{\partial \varphi}$.
Fix \(h \in \mathcal{H}(\partial \varphi) \) and \(h \leq \varphi + \varphi^* = \varphi^{FY} \)

- \(\forall \varepsilon > 0, \ x \in \text{Dom} \varphi \) we have

\[
\tilde{T}_h(\varepsilon/2, x) \subseteq \tilde{\partial} \varphi(\varepsilon, x)
\]

- If \(h = \varphi^{FY} \) we must have \(\tilde{\partial} \varphi = \tilde{T}_{\varphi^{FY}}. \)
- If \(h = \mathcal{F}_{\partial \varphi} \)

\[
\tilde{T}_{\mathcal{F}_{\partial \varphi}}(\varepsilon/2, x) \subseteq \tilde{\partial} \varphi(\varepsilon, x)
\]

Hence, we can use the Fitzpatrick function \(\mathcal{F}_{\partial \varphi} \) to obtain an enlargement smaller than \(\tilde{\partial} \varphi \)
Fix $h \in \mathcal{H}(\partial \varphi)$ and $h \leq \varphi + \varphi^* = \varphi^{FY}$

- $\forall \varepsilon > 0$, $x \in \text{Dom} \varphi$ we have
 \[\tilde{T}_h(\varepsilon/2, x) \subseteq \tilde{\partial} \varphi(\varepsilon, x) \]

- If $h = \varphi^{FY}$ we must have $\tilde{\partial} \varphi = \tilde{T}_{\varphi^{FY}}$.

- If $h = \mathcal{F}_{\partial \varphi}$
 \[\tilde{T}_{\mathcal{F}_{\partial \varphi}}(\varepsilon/2, x) \subseteq \tilde{\partial} \varphi(\varepsilon, x) \]

Hence, we can use the Fitzpatrick function $\mathcal{F}_{\partial \varphi}$ to obtain an enlargement smaller than $\tilde{\partial} \varphi$.
Fix $h \in \mathcal{H}(\partial \varphi)$ and $h \leq \varphi + \varphi^* = \varphi^\text{FY}$

- $\forall \varepsilon > 0$, $x \in \text{Dom} \varphi$ we have
 $$\tilde{T}_{\varepsilon} h(\varepsilon/2, x) \subseteq \tilde{\partial} \varphi(\varepsilon, x)$$

- If $h = \varphi^\text{FY}$ we must have $\tilde{\partial} \varphi = \tilde{T}_{\varphi^\text{FY}}$.
- If $h = F_{\partial \varphi}$
 $$\tilde{T}_{F_{\partial \varphi}}(\varepsilon/2, x) \subseteq \tilde{\partial} \varphi(\varepsilon, x)$$

Hence, we can use the Fitzpatrick function $F_{\partial \varphi}$ to obtain an enlargement smaller than $\tilde{\partial} \varphi$.

27-28
Fix \(h \in \mathcal{H}(\partial \varphi) \) and \(h \leq \varphi + \varphi^* = \varphi^{FY} \)

- \(\forall \varepsilon > 0, \ x \in \text{Dom} \varphi \) we have
 \[\tilde{T}_h(\varepsilon/2, x) \subseteq \tilde{\partial} \varphi(\varepsilon, x) \]

- If \(h = \varphi^{FY} \) we must have \(\tilde{\partial} \varphi = \tilde{T}_{\varphi^{FY}}. \)
- If \(h = \mathcal{F}_{\partial \varphi} \)
 \[\tilde{T}_{\mathcal{F}_{\partial \varphi}}(\varepsilon/2, x) \subseteq \tilde{\partial} \varphi(\varepsilon, x) \]

Hence, we can use the Fitzpatrick function \(\mathcal{F}_{\partial \varphi} \) to obtain an enlargement smaller than \(\tilde{\partial} \varphi \).
Fix $h \in \mathcal{H}(\partial \varphi)$ and $h \leq \varphi + \varphi^* = \varphi^{FY}$

- $\forall \varepsilon > 0, \ x \in \text{Dom} \varphi$ we have

$$\tilde{T}_h(\varepsilon/2, x) \subseteq \tilde{\partial} \varphi(\varepsilon, x)$$

- If $h = \varphi^{FY}$ we must have $\tilde{\partial} \varphi = \tilde{T}_{\varphi^{FY}}$.
- If $h = \mathcal{F}_{\partial \varphi}$

$$\tilde{T}_{\mathcal{F}_{\partial \varphi}}(\varepsilon/2, x) \subseteq \tilde{\partial} \varphi(\varepsilon, x)$$

Hence, we can use the Fitzpatrick function $\mathcal{F}_{\partial \varphi}$ to obtain an enlargement smaller than $\tilde{\partial} \varphi$.
Open problems

- Does the subfamily $E_{\mathcal{H}}(T)$ contain all additive enlargements of T?
- We have also seen that elements of $E_{\mathcal{H}}(T)$ are max-add when $h = \mathcal{J} h$. Are these all the max-add enlargements of T?
- Can we characterize h such that $\mathcal{J} A h = A h$?
- In which cases has $E_{\mathcal{H}}(T)$ a single element?
- When are the max-add elements unique?
Open problems

- Does the subfamily $\mathbb{E}_H(T)$ contain all additive enlargements of T?
- We have also seen that elements of $\mathbb{E}_H(T)$ are max-add when $h = Jh$. Are these all the max-add enlargements of T?
- Can we characterize h such that $JAh = Ah$?
- In which cases has $\mathbb{E}_H(T)$ a single element?
- When are the max-add elements unique?
Open problems

- Does the subfamily $E_H(T)$ contain all additive enlargements of T?
- We have also seen that elements of $E_H(T)$ are max-add when $h = J h$. Are these all the max-add enlargements of T?
- Can we characterize h such that $J A h = A h$?
- In which cases has $E_H(T)$ a single element?
- When are the max-add elements unique?
Open problems

- Does the subfamily $\mathcal{E}_\mathcal{H}(T)$ contain all additive enlargements of T?
- We have also seen that elements of $\mathcal{E}_\mathcal{H}(T)$ are max-add when $h = \mathcal{J} h$. Are these all the max-add enlargements of T?
- Can we characterize h such that $\mathcal{J} A h = A h$?
- In which cases has $\mathcal{E}_\mathcal{H}(T)$ a single element?
- When are the max-add elements unique?
Open problems

- Does the subfamily $\mathbb{E}_\mathcal{H}(T)$ contain all additive enlargements of T?
- We have also seen that elements of $\mathbb{E}_\mathcal{H}(T)$ are max-add when $h = \mathcal{J} h$. Are these all the max-add enlargements of T?
- Can we characterize h such that $\mathcal{J} Ah = Ah$?
- In which cases has $\mathbb{E}_\mathcal{H}(T)$ a single element?
- When are the max-add elements unique?
Open problems

- Does the subfamily $\mathbb{E}_\mathcal{H}(T)$ contain all additive enlargements of T?
- We have also seen that elements of $\mathbb{E}_\mathcal{H}(T)$ are max-add when $h = \mathcal{J} h$. Are these all the max-add enlargements of T?
- Can we characterize h such that $\mathcal{J} Ah = Ah$?
- In which cases has $\mathbb{E}_\mathcal{H}(T)$ a single element?
- When are the max-add elements unique?
Open problems

- Does the subfamily $E_{H}(T)$ contain all additive enlargements of T?
- We have also seen that elements of $E_{H}(T)$ are max-add when $h = Jh$. Are these all the max-add enlargements of T?
- Can we characterize h such that $JAh = Ah$?
- In which cases has $E_{H}(T)$ a single element?
- When are the max-add elements unique?
Open problems

- Does the subfamily $E_H(T)$ contain all additive enlargements of T?
- We have also seen that elements of $E_H(T)$ are max-add when $h = J h$. Are these all the max-add enlargements of T?
- Can we characterize h such that $J Ah = Ah$?
- In which cases has $E_H(T)$ a single element?
- When are the max-add elements unique?
Open problems

- Does the subfamily $E_{\mathcal{H}}(T)$ contain all additive enlargements of T?

- We have also seen that elements of $E_{\mathcal{H}}(T)$ are max-add when $h = \mathcal{J}h$. Are these all the max-add enlargements of T?

- Can we characterize h such that $\mathcal{J}Ah = Ah$?

- In which cases has $E_{\mathcal{H}}(T)$ a single element?

- When are the max-add elements unique?
Open problems

- Does the subfamily $\mathbb{E}_\mathcal{H}(T)$ contain all additive enlargements of T?
- We have also seen that elements of $\mathbb{E}_\mathcal{H}(T)$ are max-add when $h = Jh$. Are these all the max-add enlargements of T?
- Can we characterize h such that $JA h = Ah$?
- In which cases has $\mathbb{E}_\mathcal{H}(T)$ a single element?
- When are the max-add elements unique?