Semivectorial Bilevel Optimization on Riemannian Manifolds

H. Bonnel, L. Todjihoundé, C. Udriște

Université de la Nouvelle-Calédonie (ERIM) France

SPCOM15, February 8-12, 2015, Adelaide, South Australia
Outline

1. Introduction
2. Preliminary results
3. A useful equivalent form for the \((SVB_{\sigma})\)
4. Optimality Conditions
5. An existence result for the pessimistic problem
Semivectorial bilevel optimization

H. Bonnel

Introduction

Preliminary results

A useful equivalent form for the (SVB$_{\sigma}$)

Optimality Conditions

An existence result for the pessimistic problem
Semivectorial bilevel problem (SVB\(_\sigma\)): \textit{optimistic case}

Scalar upper level (leader's objective) \(f : \mathbb{M}_1 \times \mathbb{M}_2 \rightarrow \mathbb{R} \)

\[
\begin{align*}
\min_x \min_y f(x, y), \\
\text{subject to}
\end{align*}
\]

Vector lower level (follower's objective) \(F : \mathbb{M}_1 \times \mathbb{M}_2 \rightarrow \mathbb{R}' \), for each fixed \(x \in \mathbb{M}_1 \), \(y \) is a \(\sigma \)-efficient (Pareto) solution for

\[
\begin{align*}
\min_{y'} F(x, y'), \\
\text{subject to } y' \in \mathbb{M}_2.
\end{align*}
\]

Optimistic case = the followers chose a best solution for the leader among their best responses
Semivectorial bilevel problem (SVB_σ):
optimistic case

Scalar upper level (leader’s objective)
\[f : M_1 \times M_2 \rightarrow \mathbb{R} \]
\[\min_x \min_y f(x, y), \]
subject to

Vector lower level (follower’s objective)
\[F : M_1 \times M_2 \rightarrow \mathbb{R}', \]
for each fixed \(x \in M_1 \), \(y \) is a \(\sigma \)-efficient (Pareto) solution for
\[\text{MIN}_{y'} F(x, y'), \quad \text{s.t.} \quad y' \in M_2. \]

Optimistic case = the followers chose a best solution for the leader among their best responses
Semivectorial bilevel problem (SVBσ): \textit{optimistic case}

Scalar upper level (leader’s objective) \(f : M_1 \times M_2 \rightarrow \mathbb{R} \)

\[
\min_x \min_y f(x, y),
\]
subject to

Vector lower level (follower’s objective) \(F : M_1 \times M_2 \rightarrow \mathbb{R}' \),

for each fixed \(x \in M_1 \), \(y \) is a \(\sigma \)-efficient (Pareto) solution for

\[
\text{MIN}_{y'} F(x, y'), \quad \text{s.t.} \quad y' \in M_2.
\]

Optimistic case = \textit{the followers chose a best solution for the leader among their best responses}
Semivectorial bilevel problem (SVB$_{\sigma}$): optimistic case

Scalar upper level (leader's objective)

\[f : M_1 \times M_2 \rightarrow \mathbb{R} \]

\[\min_x \min_y f(x, y), \]

subject to

Vector lower level (follower's objective)

\[F : M_1 \times M_2 \rightarrow \mathbb{R}' \]

for each fixed \(x \in M_1 \), \(y \) is a \(\sigma \)-efficient (Pareto) solution for

\[\min_{y'} F(x, y'), \quad \text{s.t.} \quad y' \in M_2. \]

Optimistic case = the followers chose a best solution for the leader among their best responses

\(M_1, M_2 \) connected Riemannian manifolds verifying Hopf-Rinow theorem; \(C \) is a closed, convex, pointed cone, \(\text{int} \ (C) \neq \emptyset \), and \(\sigma \in \{w, p\} \).
Semivectorial bilevel problem (SVB$_\sigma$): *pessimistic case*

Pessimistic case = *the followers may chose a worst solution for the leader among their best responses*
Semivectorial bilevel problem (SVB)\(_{\sigma}\): *pessimistic case*

Pessimistic case = *the followers may chose a worst solution for the leader among their best responses*

Scalar upper level (leader’s objective) \(f : M_1 \times M_2 \rightarrow \mathbb{R} \)

\[
\min_x \sup_y f(x, y), \\
\text{subject to}
\]

Vector lower level (follower’s objective) \(F : M_1 \times M_2 \rightarrow \mathbb{R}' \),

for each fixed \(x \in M_1 \), \(y \) is a \(\sigma \)-efficient (Pareto) solution for

\[
\min_{y'} F(x, y'), \quad \text{s.t.} \quad y' \in M_2.
\]
Semivectorial bilevel problem (SVB$_\sigma$): *pessimistic case*

Pessimistic case = the followers may chose a worst solution for the leader among their best responses

Scalar upper level (leader’s objective)
\[
f : M_1 \times M_2 \rightarrow \mathbb{R}
\]
\[
\min_x \sup_y f(x, y),
\]
subject to

Vector lower level (follower’s objective)
\[
F : M_1 \times M_2 \rightarrow \mathbb{R}^r,
\]
for each fixed \(x \in M_1 \), \(y \) is a \(\sigma \)-efficient (Pareto) solution for
\[
\text{MIN}_{y'} C \ F(x, y'), \quad \text{s.t.} \quad y' \in M_2.
\]

\(M_1, M_2 \) connected Riemannian manifolds verifying Hopf-Rinow theorem; \(C \) is a closed, convex, pointed cone, \(\text{int} \ (C) \neq \emptyset \), and \(\sigma \in \{w, p\} \).
Particular cases

Classical bilevel optimization (optimistic or pessimistic case)

We obtain the problem

\[
\min_x \min_y f(x, y) \quad \text{(resp. } \min_x \sup_y f(x, y)\text{)} \quad \text{subject to } \quad y \in \psi(x),
\]

where

\[
\psi(x) = \argmin_{y'} \left(F(x, y') \right) \quad \text{s.t. } \quad h(y') = 0,
\]

considering \(Z = \mathbb{R}, \ M_1 = \mathbb{R}^m, \ M_2 = \{ y \in \mathbb{R}^{n+p} \mid h(y) = 0 \} \), where \(h : \mathbb{R}^{n+p} \to \mathbb{R}^p \) is smooth and regular.
Optimization over the σ-efficient set

We obtain the problem

$$\min f(y) \quad \text{subject to}$$

y is a σ-efficient solution for the vector optimization problem

$$\text{MIN}_C F(y') \quad \text{subject to} \quad y' \in S_0,$$

considering $M_1 = \{x_0\}$, $f(\cdot) = f(x_0, \cdot)$, $F(\cdot) = F(x_0, \cdot)$, $M_2 = S_0 \subset \mathbb{R}^n$.
Some references

Some references

In the existing literature all SVB studied are considered in the Euclidean (or Hilbert, Banach) spaces.
In the existing literature all SVB studied are considered in the Euclidean (or Hilbert, Banach) spaces.

In my talk I consider the Riemannian setting case.
Why Riemannian?

- Constrained optimization problems can be seen as unconstrained ones from the Riemannian geometry viewpoint;
- Moreover some nonconvex optimization problems in the Euclidean setting may become convex introducing an appropriate Riemannian metric.
- In the last years researchers began the study of optimization problems in the Riemannian setting.
- Some results are new even in the Euclidean setting.
Why Riemannian?

- Constrained optimization problems can be seen as unconstrained ones from the Riemannian geometry viewpoint;
- Moreover some nonconvex optimization problems in the Euclidean setting may become convex introducing an appropriate Riemannian metric.
- In the last years researchers began the study of optimization problems in the Riemannian setting.
- Some results are new even in the Euclidean setting.
Why Riemannian?

- Constrained optimization problems can be seen as unconstrained ones from the Riemannian geometry viewpoint;
- Moreover some nonconvex optimization problems in the Euclidean setting may become convex introducing an appropriate Riemannian metric.
- In the last years researchers began the study of optimization problems in the Riemannian setting.
- Some results are new even in the Euclidean setting.
The aim of my talk

Why Riemannian?

- Constrained optimization problems can be seen as unconstrained ones from the Riemannian geometry viewpoint;
- Moreover some nonconvex optimization problems in the Euclidean setting may become convex introducing an appropriate Riemannian metric.
- In the last years researchers began the study of optimization problems in the Riemannian setting.
- Some results are new even in the Euclidean setting.
Why Riemannian?

- Constrained optimization problems can be seen as unconstrained ones from the Riemannian geometry viewpoint;
- Moreover some nonconvex optimization problems in the Euclidean setting may become convex introducing an appropriate Riemannian metric.
- In the last years researchers began the study of optimization problems in the Riemannian setting.
- Some results are new even in the Euclidean setting.
1. Introduction

2. Preliminary results

3. A useful equivalent form for the \((SVB_\sigma)\)

4. Optimality Conditions

5. An existence result for the pessimistic problem
Hopf-Rinow Theorem

Let M be a connected Riemannian manifold. The following statements are equivalent:

1. M is complete as a metric space.
2. M is geodesically complete (i.e. all the geodesics are defined on \mathbb{R}).
3. Closed and bounded sets on M are compact.
Hopf-Rinow Theorem

Let \(M \) be a connected Riemannian manifold. The following statements are equivalent:

1. \(M \) is complete as a metric space.
2. \(M \) is geodesically complete (i.e. all the geodesics are defined on \(\mathbb{R} \)).
3. Closed and bounded sets on \(M \) are compact.
Let M be a connected Riemannian manifold. The following statements are equivalent:

1. M is complete as a metric space.
2. M is geodesically complete (i.e. all the geodesics are defined on \mathbb{R}).
3. Closed and bounded sets on M are compact.
Let M be a connected Riemannian manifold. The following statements are equivalent:

1. M is complete as a metric space.
2. M is geodesically complete (i.e. all the geodesics are defined on \mathbb{R}).
3. Closed and bounded sets on M are compact.
Hopf-Rinow Theorem

Let M be a connected Riemannian manifold. The following statements are equivalent:

1. M is complete as a metric space.
2. M is geodesically complete (i.e. all the geodesics are defined on \mathbb{R}).
3. Closed and bounded sets on M are compact.

Moreover, each of the statements (1-3) implies that any two points of M can be joined by a minimizing geodesic.
Vector optimization on Riemannian manifolds

Let M be a connected RM verifying the Hopf-Rinow theorem. Let $C \subset \mathbb{R}^r$ be a convex pointed cone, closed with $\text{int} (C) \neq \emptyset$.

For any $y, y' \in \mathbb{R}^r$ we denote

- $y \preceq y' \iff y' - y \in C$
- $y < y' \iff y' - y \in \text{int} (C)$
- $y \precsim y' \iff y' - y \in C \setminus \{0\}$.

We have

$$y < y' \implies y \precsim y' \implies y \preceq y'.$$

\preceq is a partial order relation on \mathbb{R}^r.

$<$ and \precsim are transitive relations.

\[\text{a.e. } \mathbb{R}_+C + C \subset C, \ C \cap (-C) = \{0\}\]
Vector optimization on Riemannian manifolds

Let M be a connected RM verifying the Hopf-Rinow theorem. Let $C \subset \mathbb{R}^r$ be a convex pointed cone, closed with $\text{int} (C) \neq \emptyset$.

For any $y, y' \in \mathbb{R}^r$ we denote

- $y \preccurlyeq y' \iff y' - y \in C$
- $y < y' \iff y' - y \in \text{int} (C)$
- $y \preccurlyeq y' \iff y' - y \in C \setminus \{0\}$.

We have

$$y < y' \implies y \preccurlyeq y' \implies y < y'.$$

\preccurlyeq is a partial order relation on \mathbb{R}^r.

$<$ and \preccurlyeq are transitive relations.

\[a\]
Vector optimization on Riemannian manifolds

Let M be a connected RM verifying the Hopf-Rinow theorem.

Let $C \subset \mathbb{R}^r$ be a convex pointed cone, closed with $\text{int}(C) \neq \emptyset$.

For any $y, y' \in \mathbb{R}^r$ we denote

- $y \preceq y' \iff y' - y \in C$
- $y \prec y' \iff y' - y \in \text{int}(C)$
- $y \preceq y' \iff y' - y \in C \setminus \{0\}$.

We have

$$y \prec y' \implies y \preceq y' \implies y \preceq y'.$$

\preceq is a partial order relation on \mathbb{R}^r.

\prec and \preceq are transitive relations.

\text{a}i.e. $\mathbb{R}^+ + C \subset C, C \cap (-C) = \{0\}$
Vector optimization on Riemannian manifolds

Let M be a connected RM verifying the Hopf-Rinow theorem.

Let $C \subset \mathbb{R}^r$ be a convex pointed cone, closed with $\text{int}(C) \neq \emptyset$.

For any $y, y' \in \mathbb{R}^r$ we denote

- $y \preceq y' \iff y' - y \in C$
- $y \prec y' \iff y' - y \in \text{int}(C)$
- $y \preceq y' \iff y' - y \in C \setminus \{0\}$.

We have $y \prec y' \implies y \preceq y' \implies y \preceq y'$.

\preceq is a partial order relation on \mathbb{R}^r.

\prec and \preceq are transitive relations.

\(^a\text{i.e. } \mathbb{R}^+ + C + C \subset C, C \cap (-C) = \{0\} \)
Vector optimization on Riemannian manifolds

Let M be a connected RM verifying the Hopf-Rinow theorem. Let $C \subset \mathbb{R}^r$ be a convex pointed cone, closed with $\text{int} (C) \neq \emptyset$.

For any $y, y' \in \mathbb{R}^r$ we denote

- $y \preceq y' \iff y' - y \in C$
- $y < y' \iff y' - y \in \text{int} (C)$
- $y \precsim y' \iff y' - y \in C \setminus \{0\}$.

- We have $y < y' \implies y \precsim y' \implies y \preceq y'$.

\preceq is a partial order relation on \mathbb{R}^r.

$<$ and \precsim are transitive relations.

\[^* \text{i.e. } \mathbb{R}^+ C + C \subset C, \ C \cap (-C) = \{0\} \]
Consider a vector function \(G = (G_1, \ldots, G_r) : M \rightarrow \mathbb{R}^r \), and the multiobjective optimization problem

\[
(MOP) \quad \text{MIN}_CG(x) \quad \text{s.t. } x \in M.
\]

For (MOP) the point \(a \in M \) is called:

- **Pareto solution** if there is no \(x \in M \) such that \(G(x) \npreceq G(a) \);
- **weakly Pareto solution** if there is no \(x \in M \) such that \(G(x) \prec G(a) \);
- **properly Pareto solution** if \(a \) is a Pareto solution, and there exists a pointed convex cone \(K \) such that \(C \setminus \{0\} \subset \text{int} (K) \) and \(a \) is a Pareto solution for the problem \(\text{MIN}_KG(x) \quad \text{s.t. } x \in M \), in other words \(G(M) \cap (G(a) - K) = \{G(a)\} \).
Consider a vector function \(G = (G_1, \ldots, G_r) : M \rightarrow \mathbb{R}^r \), and the multiobjective optimization problem

\[
\text{(MOP)} \quad \text{MIN}_C G(x) \quad \text{s.t.} \quad x \in M.
\]

For (MOP) the point \(a \in M \) is called:

- **Pareto solution** if there is no \(x \in M \) such that \(G(x) \not\succeq G(a) \);
- **weakly Pareto solution** if there is no \(x \in M \) such that \(G(x) \prec G(a) \);
- **properly Pareto solution** if \(a \) is a Pareto solution, and there exists a pointed convex cone \(K \) such that \(C \setminus \{0\} \subset \text{int} (K) \) and \(a \) is a Pareto solution for the problem \(\text{MIN}_K G(x) \quad \text{s.t.} \quad x \in M \), in other words \(G(M) \cap (G(a) - K) = \{G(a)\} \).
Consider a vector function $G = (G_1, \ldots, G_r): M \rightarrow \mathbb{R}^r$, and the multiobjective optimization problem

(MOP) \quad \text{MIN}_C G(x) \quad \text{s.t.} \quad x \in M.

For (MOP) the point $a \in M$ is called:

- **Pareto solution** if there is no $x \in M$ such that $G(x) \nless G(a)$;
- **weakly Pareto solution** if there is no $x \in M$ such that $G(x) \prec G(a)$;
- **properly Pareto solution** if a is a Pareto solution, and there exists a pointed convex cone K such that $C \setminus \{0\} \subset \text{int}(K)$ and a is a Pareto solution for the problem $\text{MIN}_K G(x)$ \quad \text{s.t.} \quad x \in M$, in other words $G(M) \cap (G(a) - K) = \{G(a)\}$.

Consider a vector function $G = (G_1, \ldots, G_r) : M \to \mathbb{R}^r$, and the multiobjective optimization problem

$$(\text{MOP}) \quad \text{MIN}_C G(x) \quad \text{s.t.} \quad x \in M.$$

For (MOP) the point $a \in M$ is called:

- **Pareto solution** if there is no $x \in M$ such that $G(x) \not\preceq G(a)$;
- **weakly Pareto solution** if there is no $x \in M$ such that $G(x) \prec G(a)$;
- **properly Pareto solution** if a is a Pareto solution, and there exists a pointed convex cone K such that $C \setminus \{0\} \subset \text{int} (K)$ and a is a Pareto solution for the problem $\text{MIN}_K G(x)$ \quad \text{s.t.} \quad x \in M$, in other words $G(M) \cap (G(a) - K) = \{G(a)\}$.

In the particular case $C = \mathbb{R}_+^r$ (the Pareto cone), the previous definitions can be stated as follows.

- **Pareto solution** if there is no $x \in M$ such that, for all $i \in \{1, \ldots, r\}$, $G_i(x) \leq G_i(a)$, and $G(x) \neq G(a)$;
- **weakly Pareto solution** if there is no $x \in M$ such that, for all $i \in \{1, \ldots, r\}$, $G_i(x) < G_i(a)$;
- **properly Pareto solution** (provided that $G(M) + \mathbb{R}_+^r$ is convex) if a is a Pareto solution, and there is a real number $\mu > 0$ such that for each $i \in \{1, \ldots, r\}$ and every $x \in M$ with $G_i(x) < G_i(a)$ at least one $j \in \{1, \ldots, r\}$ exists with $G_j(x) > G_j(a)$ and
 \[
 \frac{G_i(a) - G_i(x)}{G_j(x) - G_j(a)} \leq \mu.
 \]
Vector optimization on Riemannian manifolds

In the particular case $C = \mathbb{R}_+^r$ (the Pareto cone), the previous definitions can be stated as follows.

- **Pareto solution** if there is no $x \in M$ such that, for all $i \in \{1, \ldots, r\}$, $G_i(x) \leq G_i(a)$, and $G(x) \neq G(a)$;

- **weakly Pareto solution** if there is no $x \in M$ such that, for all $i \in \{1, \ldots, r\}$, $G_i(x) < G_i(a)$;

- **properly Pareto solution** (provided that $G(M) + \mathbb{R}_+^r$ is convex) if a is a Pareto solution, and there is a real number $\mu > 0$ such that for each $i \in \{1, \ldots, r\}$ and every $x \in M$ with $G_i(x) < G_i(a)$ at least one $j \in \{1, \ldots, r\}$ exists with $G_j(x) > G_j(a)$ and

$$\frac{G_i(a) - G_i(x)}{G_j(x) - G_j(a)} \leq \mu.$$
Vector optimization on Riemannian manifolds

In the particular case $C = \mathbb{R}_+^r$ (the Pareto cone), the previous definitions can be stated as follows.

- **Pareto solution** if there is no $x \in M$ such that, for all $i \in \{1, \ldots, r\}$, $G_i(x) \leq G_i(a)$, and $G(x) \neq G(a)$;

- **weakly Pareto solution** if there is no $x \in M$ such that, for all $i \in \{1, \ldots, r\}$, $G_i(x) < G_i(a)$;

- **properly Pareto solution** (provided that $G(M) + \mathbb{R}_+^r$ is convex) if a is a Pareto solution, and there is a real number $\mu > 0$ such that for each $i \in \{1, \ldots, r\}$ and every $x \in M$ with $G_i(x) < G_i(a)$ at least one $j \in \{1, \ldots, r\}$ exists with $G_j(x) > G_j(a)$ and

\[
\frac{G_i(a) - G_i(x)}{G_j(x) - G_j(a)} \leq \mu.
\]
Vector optimization on Riemannian manifolds

In the particular case $C = \mathbb{R}^r_+$ (the Pareto cone), the previous definitions can be stated as follows.

- **Pareto solution** if there is no $x \in M$ such that, for all $i \in \{1, \ldots, r\}$, $G_i(x) \leq G_i(a)$, and $G(x) \neq G(a)$;

- **weakly Pareto solution** if there is no $x \in M$ such that, for all $i \in \{1, \ldots, r\}$, $G_i(x) < G_i(a)$;

- **properly Pareto solution** (provided that $G(M) + \mathbb{R}^r_+$ is convex) if a is a Pareto solution, and there is a real number $\mu > 0$ such that for each $i \in \{1, \ldots, r\}$ and every $x \in M$ with $G_i(x) < G_i(a)$ at least one $j \in \{1, \ldots, r\}$ exists with $G_j(x) > G_j(a)$ and

\[
\frac{G_i(a) - G_i(x)}{G_j(x) - G_j(a)} \leq \mu.
\]
Vector optimization on Riemannian manifolds

Let the symbol $\sigma \in \{w, p\}$ stands for:

weak if $\sigma = w$,

or

proper if $\sigma = p$.

We denote by

$$\sigma\text{-ARGMIN}_{x \in M} C \mathcal{G}(x)$$

the set of all σ-Pareto solutions.
Vector optimization on Riemannian manifolds

Definition

A real function $h : M \rightarrow \mathbb{R}$ is called \textit{convex} if for any two distinct points a and b in M, and for any minimizing geodesic segment $\gamma : [0, 1] \rightarrow M$ with $\gamma(0) = a$, $\gamma(1) = b$, the function $h \circ \gamma$ is convex in the usual way, i.e. for all $t \in]0, 1[$

$$h(\gamma(t)) \leq (1 - t)h(a) + th(b).$$

If the last inequality is strict, we say that h is \textit{strictly convex}.
Vector optimization on Riemannian manifolds

Definition

The *vector valued function* $G = (G_1, \ldots, G_r) : M \rightarrow \mathbb{R}^r$ is called *C-convex* (resp. *w-strictly C-convex* or *p-strictly C-convex*) if for any two distinct points a and b in M, and for any geodesic segment $\gamma : [0, 1] \rightarrow M$ with $\gamma(0) = a$, $\gamma(1) = b$, we have respectively

$\forall t \in]0, 1[\quad G(\gamma(t)) \lessdot (1-t)G(a)+tG(b),$

$\forall t \in]0, 1[\quad G(\gamma(t)) \prec (1-t)G(a)+tG(b),$

$\forall t \in]0, 1[\quad G(\gamma(t)) \preceq (1-t)G(a)+tG(b).$
Remark

In the case $C = \mathbb{R}_+^r$ we have

- G is \mathbb{R}_+^r-convex \iff G_i is convex for all $i = 1, \ldots, r$;
- G is w-strictly \mathbb{R}_+^r-convex \iff G_i is strictly convex for all $i = 1, \ldots, r$;
- G is \mathbb{R}_+^r-convex and there exists $i \in \{1, \ldots, r\}$ such that G_i is strictly convex \implies G is p-strictly \mathbb{R}_+^r-convex.
The **dual cone of C** (or positive polar cone) is the set

$$C^* := \{ \lambda \in \mathbb{R}^r | \langle \lambda, y \rangle \geq 0 \quad \forall y \in C \},$$

and its **quasi-interior** is given by

$$C^*_\# := \{ \lambda \in \mathbb{R}^r | \langle \lambda, y \rangle > 0 \quad \forall y \in C \setminus \{0\} \}.$$

Notice that

$$(\mathbb{R}_+^r)^* = \mathbb{R}_+^r, \quad (\mathbb{R}_+^r)_\# = \text{int} (\mathbb{R}_+^r) = \{ \lambda \in \mathbb{R}^r | \lambda_i > 0 \quad i = 1, \ldots, r \}.$$

Let us denote

$$\Lambda_\sigma = \begin{cases}
\{ \lambda \in C^* | \| \lambda \|_1 = 1 \} & \text{if } \sigma = w \\
C^*_\# & \text{if } \sigma = p.
\end{cases}$$
Proposition

A. The dual cone C^* is a closed set in \mathbb{R}^r.

B. The set $C^*_\#$ (the quasi-interior of C^*) is a nonempty open set, and it is in fact the topological interior of C^*.

C. The set Λ_w is compact.

This fact it is not true in general, i.e. when C is a cone in a topological vector space, but in our setting we take advantage of the finite dimension of \mathbb{R}^r.
Vector optimization on Riemannian manifolds

Theorem (Scalarization)

For each $\sigma \in \{w, p\}$, we have

$$\bigcup_{\lambda \in \Lambda_{\sigma}} \arg\min_{x \in M} \langle \lambda, G(x) \rangle \subset \sigma\text{-}\text{ARGMIN}_C G(x).$$

Moreover, if G is C-convex on M, then the previous inclusion becomes an equality, i.e.

$$\sigma\text{-}\text{ARGMIN}_C G(x) = \bigcup_{\lambda \in \Lambda_{\sigma}} \arg\min_{x \in M} \langle \lambda, G(x) \rangle.$$
Section

1. Introduction

2. Preliminary results

3. A useful equivalent form for the \((SVB_{\sigma})\)

4. Optimality Conditions

5. An existence result for the pessimistic problem
Hypotheses

- Leader decision space: \((M_1, g_1)\) RM verifying HR
- Follower(s) decision space: \((M_2, g_2)\) RM verifying HR
- Leader scalar objective function: \(f : M_1 \times M_2 \to \mathbb{R}\)
- Follower(s) multiobjective function: \(F = (F_1, \ldots, F_r) : M_1 \times M_2 \to \mathbb{R}^r\)
- For each \(x \in M_1\), \(\psi(x)\) stands for the weakly or properly Pareto solution set of the follower multiobjective optimization problem, i.e.
 \[\psi(x) := \sigma\text{-ARGMIN}_{y \in M_2} C F(x, y)\]

Thus \(\psi : M_1 \Rightarrow M_2\) is a set valued function.
Hypotheses

(HC)$_\sigma$ For each $x \in M_1$,
the function $F(x, \cdot)$ is σ-strictly C-convex on M_2, $\sigma \in \{w, p\}$.

(HCC)$_\sigma$ For all $x \in M_1$ and $\lambda \in \Lambda_\sigma$, the function $y \mapsto \langle \lambda, F(x, y) \rangle$
has bounded sublevel sets, i.e., for all reals α, the set

$$\{y \in M_2 | \langle \lambda, F(x, y) \rangle \leq \alpha\}$$

is bounded.
The problems

- The **optimistic semivectorial bilevel problem**

\[
\text{(OSB)} \quad \min_{x \in M_1} \min_{y \in \psi(x)} f(x, y).
\]

The follower cooperates with the leader, i.e., for each \(x \in M_1\), the follower chooses amongst all its \(\sigma\)-Pareto solutions (his best responses) one which is the best for the leader (assuming that such a solution exists).

- The **pessimistic semivectorial bilevel problem**

\[
\text{(PSB)} \quad \min_{x \in M_1} \sup_{y \in \psi(x)} f(x, y).
\]

There is no cooperation between the leader and the follower, and the leader expects the worst scenario, i.e., for each \(x \in M_1\), the follower may choose amongst all its \(\sigma\)-Pareto solutions (his best responses) one which is unfavorable for the leader (in this case we prefer to use “sup” instead of “max”).
The problems

- The *optimistic semivectorial bilevel problem*

\[(OSB) \quad \min_{x \in M_1} \min_{y \in \psi(x)} f(x, y). \]

The follower cooperates with the leader, i.e., for each \(x \in M_1 \), the follower chooses amongst all its \(\sigma \)-Pareto solutions (his best responses) one which is the best for the leader (assuming that such a solution exists).

- The *pessimistic semivectorial bilevel problem*

\[(PSB) \quad \min_{x \in M_1} \sup_{y \in \psi(x)} f(x, y). \]

There is no cooperation between the leader and the follower, and the leader expects the worst scenario, i.e., for each \(x \in M_1 \), the follower may choose amongst all its \(\sigma \)-Pareto solutions (his best responses) one which is unfavorable for the leader (in this case we prefer to use “sup” instead of “max”).
An equivalent problem

Proposition

For any $x \in M_1$ and any $\lambda \in \Lambda_\sigma$, the real valued function

$$M_2 \ni y \mapsto \langle \lambda, F(x, y) \rangle$$

is strictly convex.

Proposition

For each $x \in M_1$ and $\lambda \in \Lambda_\sigma$, the minimization problem

$$\min_{y \in M_2} \langle \lambda, F(x, y) \rangle$$

admits a unique solution which will be denoted hereafter $y(x, \lambda)$.
An equivalent problem

Proposition

For any \(x \in M_1 \) and any \(\lambda \in \Lambda_{\sigma} \), the real valued function

\[
M_2 \ni y \mapsto \langle \lambda, F(x, y) \rangle
\]

is strictly convex.

Proposition

For each \(x \in M_1 \) and \(\lambda \in \Lambda_{\sigma} \), the minimization problem

\[
\min_{y \in M_2} \langle \lambda, F(x, y) \rangle
\]

admits a unique solution *which will be denoted hereafter* \(y(x, \lambda) \).
Corollary

For each fixed $x \in M_1$, the map $\lambda \mapsto y(x, \lambda)$ is a surjection from Λ_σ to $\psi(x)$, hence

$$\psi(x) = \bigcup_{\lambda \in \Lambda_\sigma} \{y(x, \lambda)\}.$$
Theorem

Problem (OSB) is equivalent to the following problem\(^a\)

\[
\min_{x \in M_1} \min_{\lambda \in \Lambda_\sigma} f(x, y(x, \lambda))
\]

Problem (PSB) is equivalent to the following problem

\[
\min_{x \in M_1} \sup_{\lambda \in \Lambda_\sigma} f(x, y(x, \lambda))
\]

\(^a\) \(y(x, \lambda)\) is the unique solution to the problem \(\min_{y \in M_2} \langle \lambda, F(x, y) \rangle\)
1. Introduction

2. Preliminary results

3. A useful equivalent form for the (SVB_σ)

4. Optimality Conditions

5. An existence result for the pessimistic problem
From now on we suppose that $f(\cdot, \cdot)$ and $F(\cdot, \cdot)$ are smooth functions.

∇_i stands for the gradient operator on (M_i, g_i), $i = 1, 2$. F^a (resp. λ^a), $a = 1, \ldots, r$, are the components functions of the map $F : M_1 \times M_2 \rightarrow \mathbb{R}^r$ (resp. the canonical coordinates of the vector $\lambda \in \mathbb{R}^r$).

Proposition (Necessary and sufficient conditions for $y(x, \lambda)$)

Let $\lambda \in \Lambda_\sigma$ and $x \in M_1$ be given. Let $y \in M_2$. Then

$$y = y(x, \lambda) \iff \lambda_a \nabla_2 F^a(x, y) = 0.$$
More about the map \((x, \lambda) \mapsto y(x, \lambda)\)

Consider the map \(G : \mathbb{R}^r \times M_1 \times M_2 \rightarrow TM_2\) defined by

\[
G(\lambda, x, y) = \lambda a \text{grad}_2 F^a(x, y).
\]

For each \((\lambda, x) \in \Lambda_\sigma \times M_1\), the solution \(y = y(x, \lambda)\) to the problem
\[
\min_{y \in M_2} \langle \lambda, F(x, y) \rangle
\]

satisfies the equation

\[
G(\lambda, x, y) = 0.
\]

Denote by \(\delta_2 G(\lambda, x, y) : T_y M_2 \rightarrow T_y M_2\) the partial differential of \(G\) w.r.t. to \(y\) at the point \((\lambda, x, y)\).
More about the map \((x, \lambda) \mapsto y(x, \lambda)\)

Proposition

Let \((\lambda_0, x_0) \in \Lambda_\sigma \times M_1\), and let \(y_0 = y(x_0, \lambda_0)\) be the unique solution of the problem \(\min_{y \in M_2} \langle \lambda_0, F(x_0, y) \rangle\).

Suppose that \(\delta_2 G(\lambda_0, x_0, y_0)\) is an isomorphism\(^a\). Then, in a neighborhood of \((\lambda_0, x_0)\) the function \(y(\cdot, \cdot)\) is smooth and

\[
\frac{\partial}{\partial \lambda} y(\lambda, x) = - (\delta_2 G(\lambda, x, y))^{-1} \circ \frac{\partial G}{\partial \lambda}(\lambda, x, y)
\]

and

\[
\delta_1 y(\lambda, x) = - (\delta_2 G(\lambda, x, y))^{-1} \circ \delta_1 G(\lambda, x, y),
\]

where \(\delta_1\) denotes the partial differential operator w.r.t. \(x \in M_1\).

\(^a\)This hypothesis holds for example if we assume that \(G\) is a conformal map, or for example if there exists a real number \(c > 0\) such that

\[
g_2(\delta_2 G(\lambda_0, x_0, y_0)(v), v) \geq cg_2(v, v), \forall v \in T_y M_2.
\]
Theorem (Necessary optimality conditions for OSB$_p$)

Suppose that \(\text{loc-arg} \min_{\lambda \in \Lambda_p} f(x, y(x, \lambda)) \neq \emptyset \) for each \(x \in M_1 \).

Let \((x^*, \lambda^*) \in M_1 \times \Lambda_p\) be a (local) solution of the problem

\[
\min_{x \in M_1} \min_{\lambda \in \Lambda_p} f(x, y(x, \lambda)).
\]

Let \(y^* = y(x^*, \lambda^*) \). Then

\[
\text{grad}_1 f(x^*, y^*) + \text{grad}_2 f(x^*, y^*) \circ \delta_1 y(x^*, \lambda^*) = 0
\]

\[
\text{grad}_2 f(x^*, y^*) \circ \frac{\partial y}{\partial \lambda}(x^*, \lambda^*) = 0.
\]

Moreover, the bilinear form \(\text{Hess}(\varphi)(x^*, \lambda^*) \) is positive semidefinite, where \((x, \lambda) \mapsto \varphi(x, \lambda) := f(x, y(x, \lambda))\).
Optimality conditions for the optimistic problem

Theorem (Necessary optimality conditions for OSB\(_w\))

Let \((x^*, \lambda^*) \in M_1 \times \Lambda_w\) be a (local) solution of the problem

\[
\min_{x \in M_1} \min_{\lambda \in \Lambda_w} f(x, y(x, \lambda)).
\]

Let \(y^* = y(x^*, \lambda^*)\). Then

\[
\text{grad}_1 f(x^*, y^*) + \text{grad}_2 f(x^*, y^*) \circ \delta_1 y(x^*, \lambda^*) = 0
\]

\[
\text{grad}_2 f(x^*, y^*) \circ \frac{\partial y}{\partial \lambda}(x^*, \lambda^*) + N^C_{\Lambda_w}(\lambda^*) \ni 0,
\]

where \(N^C_{\Lambda_w}(\lambda^*)\) is the Clarke normal cone to the set \(\Lambda_w\) at the point \(\lambda^*\).
Optimality conditions for the optimistic problem

For $C = \mathbb{R}^{r_+}_+$ the previous theorem becomes

Theorem

Let $(x^*, \lambda^*) \in M_1 \times \Lambda_w$ be a (local) solution of the problem

$$\min_{x \in M_1} \min_{\lambda \in \Lambda_w} f(x, y(x, \lambda)).$$

Let $y^* = y(x^*, \lambda^*)$. Then there exists a real ν such that

$$\nabla_1 f(x^*, y^*) + \nabla_2 f(x^*, y^*) \circ \delta_1 y(x^*, \lambda^*) = 0$$

$$\nabla_2 f(x^*, y^*) \circ \frac{\partial y}{\partial \lambda_i}(x^*, \lambda^*) = \nu \ \forall i \in I_+(\lambda^*)$$

$$\nabla_2 f(x^*, y^*) \circ \frac{\partial y}{\partial \lambda_k}(x^*, \lambda^*) \geq \nu \ \forall k \in I_0(\lambda^*),$$

where $I_+(\lambda^*) = \{i|\lambda^*_i > 0\}$ and $I_0(\lambda^*) = \{k|\lambda^*_k = 0\}$.
1. Introduction

2. Preliminary results

3. A useful equivalent form for the \((SVB_\sigma)\)

4. Optimality Conditions

5. An existence result for the pessimistic problem
Existence result for PSB\(_w\)

For the more difficult case of the pessimistic problem we will deal only with weakly-Pareto solutions.

Theorem

Suppose moreover that the Riemannian manifold \((M_1, g_1)\) is compact. Then the pessimistic problem

\[
\min_{x \in M_1} \sup_{\lambda \in \Lambda_w} f(x, y(x, \lambda))
\]

has at least one global solution.
Semivectorial bilevel optimization

H. Bonnel

Introduction
Preliminary results
A useful equivalent form for the (SVB)

Optimality Conditions
An existence result for the pessimistic problem

THANK YOU!