Concentration near a hyperplane in quasi-normed spaces

Omer Friedland 1 Ohad Giladi 2 Olivier Guédon 3

1 Université Paris VI
2 University of Newcastle
3 Université Paris-Est

September 5, 2015
Outline

- Quasi-norms
- Small-ball estimates and structure of vectors
- Esseen inequality
- Euclidean vs non-euclidean result
- The real problem
Definition (Star-shaped domain)

A body $K \subseteq \mathbb{R}^d$ is star-shaped if $\text{conv}(\{x, 0\}) \subseteq K \ \forall x \in K$.

Given $K \subseteq \mathbb{R}^d$ star-shaped and centrally symmetric, let $\|x\|_K = \inf\{t > 0 : x/t \in K\}$.

Definition (Quasi-norm in \mathbb{R}^d)

$\|\cdot\|_K$ as defined above is a quasi-norm: same as a norm but instead of the triangle inequality, $\|x + y\|_K \leq C_K(\|x\|_K + \|y\|_K)$, $C_K \geq 1$.

Quasi-norms
Definition (Star-shaped domain)

A body $K \subseteq \mathbb{R}^d$ is star-shaped if $\text{conv}(\{x, 0\}) \subseteq K \ \forall x \in K$.

Given $K \subseteq \mathbb{R}^d$ star-shaped and centrally symmetric, let

$$\|x\|_K = \inf \{ t > 0 : x/t \in K \}.$$
Definition (Star-shaped domain)

A body $K \subseteq \mathbb{R}^d$ is star-shaped if $\text{conv}(\{x, 0\}) \subseteq K \ \forall x \in K$.

Given $K \subseteq \mathbb{R}^d$ star-shaped and centrally symmetric, let

$$
\|x\|_K = \inf \left\{ t > 0 : x/t \in K \right\}.
$$

Definition (Quasi-norm in \mathbb{R}^d)

$\| \cdot \|_K$ as defined above is a quasi-norm: same as a norm but instead of the triangle inequality,

$$
\|x + y\|_K \leq C_K (\|x\|_K + \|y\|_K), \quad C_K \geq 1.
$$
Definition (Quasi-norm in \(\mathbb{R}^d \))

\(\| \cdot \|_K \) as defined above is a quasi-norm, that is, same as a norm but instead of the triangle inequality,

\[
\| x + y \|_K \leq C_K (\| x \|_K + \| y \|_K), \quad C_K \geq 1.
\]

Example: \(\ell^d_p \)

- Take \(\mathbb{R}^d \) with \(\| x \|_p = \left(\sum_{i=1}^d |x_i|^p \right)^{1/p} \), \(p > 0 \).
- This is a quasi-norm with \(C_p = \max\{2^{1/p-1}, 1\} \) (\(\implies \) if \(p \geq 1 \) this is a norm).
- Let \(B^d_p \) be the unit ball of this (quasi-)norm.
Small-Ball Probability

- $V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^d$ a family of n fixed vectors.
- $\varepsilon_1, \ldots, \varepsilon_n$ independent symmetric Bernoulli random variables.
V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^d \text{ a family of } n \text{ fixed vectors.} \\
\varepsilon_1, \ldots, \varepsilon_n \text{ independent symmetric Bernoulli random variables.}

Definition (Small-Ball Probability)

Let $r > 0$, $K \subseteq \mathbb{R}^d$ symmetric star-shaped, V as above. Define

$$
\rho^K_r (V) = \sup_{x \in \mathbb{R}^d} \mathbb{P}\left(\sum_{j=1}^{n} \varepsilon_j v_j \in x + rK \right).
$$
Small-Ball and structure of V

Small-Ball Probability

$$\rho^K_r(V) = \sup_{x \in \mathbb{R}^d} \mathbb{P}\left(\sum_{j=1}^n \varepsilon_j v_j \in x + rK \right).$$

$\rho^K_r(V)$ is large \iff $\sum \varepsilon_j v_j$ is highly concentrated \iff Much cancellation between members of V \iff V is ‘well-structured’
Examples in \mathbb{R}^1

Theorem (Erdős ’45)

If v_1, \ldots, v_n are integers, then

$$\rho_0^{B^1_2}(V) = \sup_{x \in \mathbb{R}^d} \mathbb{P}\left(\sum_{j=1}^{n} \varepsilon_j v_j = x \right) = O(n^{-1/2}).$$

Theorem (Sárközy-Szemerédi ’65)

If v_1, \ldots, v_n are different integers, then

$$\rho_0^{B^1_2}(V) = \sup_{x \in \mathbb{R}^d} \mathbb{P}\left(\sum_{j=1}^{n} \varepsilon_j v_j = x \right) = O(n^{-3/2}).$$
Examples in \mathbb{R}^1

Theorem (Erdős ’45)

v_1, \ldots, v_n integers, then

$$
\rho_{B_2^1}(V) = \sup_{x \in \mathbb{R}^d} \mathbb{P}\left(\sum_{j=1}^{n} \varepsilon_j v_j = x \right) = O(n^{-1/2}).
$$

Theorem (Sárközy-Szemerédi ’65)

v_1, \ldots, v_n different integers, then

$$
\rho_{B_2^1}(V) = \sup_{x \in \mathbb{R}^d} \mathbb{P}\left(\sum_{j=1}^{n} \varepsilon_j v_j = x \right) = O(n^{-3/2}).
$$

In general: several ways of defining ‘well-structured’.
Let X_V be the random vector $\sum_{j=1}^{n} \varepsilon_j v_j$.

Theorem (Esseen inequality '66)

$$\rho_{B_2^d}(V) \leq \left(\frac{r}{\sqrt{d}} + \sqrt{d} \right)^d \int_{B_2^d} |\mathbb{E}(i\langle X_V, \xi \rangle)| d\xi.$$
Let X_V be the random vector $\sum_{j=1}^{n} \varepsilon_j v_j$.

Theorem (Esseen inequality ’66)

\[
\rho_{r^2}^{B_2^d}(V) \leq \left(\frac{r}{\sqrt{d}} + \sqrt{d} \right)^d \int_{B_2^d} \left| \mathbb{E}(i\langle X_V, \xi \rangle) \right| d\xi.
\]

Theorem (Esseen inequality for quasi-norms, FGG ’14)

\[
\rho_r^K(V) \leq C_r^K d r^d \int_{\mathbb{R}^d} \left| \mathbb{E}(i\langle X_V, \xi \rangle) \right| e^{-r^2 \left\| \xi \right\|^2_2} d\xi.
\]

Using the Esseen for quasi-norms, can obtain more general versions of euclidean results.
Definition

Let ω_K be the smallest number such that $B_2^d \subseteq \omega_K K$. For example: $\omega_{B_2^d} = \omega_{B_\infty^d} = 1$, $\omega_{B_1^d} = \sqrt{d}$.

Theorem (Concentration near a hyperplane in quasi-normed space, FGG '15)

Let $\| \cdot \|_K$ be a quasi-norm on \mathbb{R}^d. Assume that $\ell \leq n$ is such that $\rho_r^K(V) \geq \left(\frac{C_K}{\sqrt{\ell}} \right)^d$. Then there exists a hyperplane H and at least $n - \ell$ vectors from V that satisfy

$$\text{dist}_K(v_j, H) = \inf_{h \in H} \| v_j - h \|_K \leq \omega_K r.$$

This result was proved for the euclidean norm by Tao-Vu '12.
A question from combinatorics

\[P^K_r(d, n) = \sup_{V} \rho^K_r(V). \]

Sup over all sets of size \(n \) of vectors of length \(\geq 1 \).

Question: Estimate \(P^K_r(n, d) \).
A question from combinatorics

\[\mathcal{P}_r^K(d, n) = \sup_{V} \rho_r^K(V). \]

Sup over all sets of size \(n \) of vectors of length \(\geq 1 \).

Question: Estimate \(\mathcal{P}_r^K(n, d) \).

Theorem (Erdős ’65)

\[\mathcal{P}_{r_1}^{B_2}(n, 1) = 2^{-n} S(n, \lfloor r \rfloor + 1). \]

\(S(n, m) \) is sum of largest \(m \) binomial coefficients.
A question from combinatorics

\[P^K_r(d, n) = \sup_V \rho^K_r(V). \]

Sup over all sets of size \(n \) of vectors of length \(\geq 1 \).

Question: Estimate \(P^K_r(n, d) \).

Theorem (Erdős ’65)

\[P^B^1_r(n, 1) = 2^{-n} S(n, \lfloor r \rfloor + 1). \]

\(S(n, m) \) is sum of largest \(m \) binomial coefficients.

Theorem (Frankl-Füredi ’88, Tao-Vu ’12)

\[P^{B^d}_r(n, d) = (1 + o(1))2^{-n} S(n, \lfloor r \rfloor + 1). \]
Idea of proof (Tao-Vu)

Theorem (Frankl-Füredi ’88, Tao-Vu ’12)

\[
\mathcal{P}_{r^{B_2^d}}(d, n) = (1 + o(1))2^{-n}S(n, \lfloor r \rfloor + 1).
\]

Idea of proof (Tao-Vu)

Lower bound: follows from 1d result.
Upper bound: if the probability is too large, by the hyperplane theorem can go 1 dimension down and get a contradiction.
Idea of proof (Tao-Vu)

Theorem (Frankl-Füredi '88, Tao-Vu '12)

\[\mathcal{P}_{r}^{B_{2}^{d}}(d, n) = (1 + o(1))2^{-n}S(n, \lfloor r \rfloor + 1). \]

Idea of proof (Tao-Vu)

Lower bound: follows from 1d result.

Upper bound: if the probability is too large, by the hyperplane theorem can go 1 dimension down and get a contradiction.

Projection of euclidean ball on a hyperplane is a euclidean ball in one dimension lower. Not the case for other norms.
Idea of proof (Tao-Vu)

Theorem (Frankl-Füredi ’88, Tao-Vu ’12)

\[\mathcal{P}_{r^d_2}(d, n) = (1 + o(1))2^{-n}S(n, \lfloor r \rfloor + 1). \]

Idea of proof (Tao-Vu)

Lower bound: follows from 1d result.

Upper bound: if the probability is too large, by the hyperplane theorem can go 1 dimension down and get a contradiction.

Projection of euclidean ball on a hyperplane is a euclidean ball in one dimension lower. Not the case for other norms.

Estimating \(\mathcal{P}_r^K(d, n), K \neq B_2^d \) is still open...
The End