Probability Densities of Random Walks

James Wan

The University of Newcastle

9 July, 2010

Co-authors: Jon Borwein, Armin Straub, (Wadim Zudilin)
Outline

1. Introduction

2. Expectations
 - Experimental maths 1

3. Densities

4. 3 and 4 steps
 - Experimental maths 2
The random walk integrals

Definition

\[W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^{n} e^{2\pi x_k i} \right|^s \, dx \]

for complex \(s \). \(W_n := W_n(1) \).

Definition

Let \(p_n \) be the (unique) function that satisfies

\[W_n(s) = \int_0^n p_n(x)x^s \, dx. \]
The random walk integrals

Definition

\[W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^{n} e^{2\pi x_k i} \right|^s \ dx \]

for complex \(s \). \(W_n := W_n(1) \).

Definition

Let \(p_n \) be the (unique) function that satisfies

\[W_n(s) = \int_0^1 p_n(x)x^s \ dx. \]

- Work in progress...
The random walk integrals

Definition

\[W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^{n} e^{2\pi x_k i} \right|^s \, dx \]

for complex \(s \). \(W_n := W_n(1) \).

Definition

Let \(p_n \) be the (unique) function that satisfies

\[W_n(s) = \int_0^n p_n(x)x^s \, dx. \]

- Work in progress...
- Makes heavy use of experimental mathematics.
What we know

- $W_1(s) = 1$, $W_2(s) = \binom{s}{s/2}$. So $p_1(x) = \delta_1(x)$, $p_2(x) = \frac{2}{\pi \sqrt{4-x^2}}$.
What we know

- $W_1(s) = 1$, $W_2(s) = \binom{s}{s/2}$. So $p_1(x) = \delta_1(x)$,
 \[
p_2(x) = \frac{2}{\pi \sqrt{4-x^2}}.
 \]

- $W_3(\pm 1)$ have closed form, rest follows by recursion.
What we know

- \(W_1(s) = 1, \ W_2(s) = \binom{s}{s/2} \). So \(p_1(x) = \delta_1(x) \),

\[
p_2(x) = \frac{2}{\pi \sqrt{4-x^2}}.
\]

- \(W_3(\pm 1) \) have closed form, rest follows by recursion.

- Later: part of derivation for \(W_4(\pm 1) \).
What we know

- $W_1(s) = 1$, $W_2(s) = \binom{s}{s/2}$. So $p_1(x) = \delta_1(x)$,

 \[p_2(x) = \frac{2}{\pi \sqrt{4-x^2}}. \]

- $W_3(\pm 1)$ have closed form, rest follows by recursion.

- Later: part of derivation for $W_4(\pm 1)$.

- p_n is unique as all moments are known and the interval of integration is finite.
What we know

- $W_1(s) = 1$, $W_2(s) = \binom{s}{s/2}$. So $p_1(x) = \delta_1(x)$,

 $p_2(x) = \frac{2}{\pi \sqrt{4-x^2}}$.

- $W_3(\pm 1)$ have closed form, rest follows by recursion.

- Later: part of derivation for $W_4(\pm 1)$.

- p_n is unique as all moments are known and the interval of integration is finite.

- We shift focus from W_n to p_n, in particular p_3 and p_4.
Closed forms

Theorem (1)

\[
W_4(-1) = \frac{\pi}{4} \, 7F_6 \left(\begin{array}{c} 5/4, 1/2, 1/2, 1/2, 1/2, 1/2 \\ 1/4, 1, 1, 1, 1, 1 \end{array} \right| 1 \right).
\]
Closed forms

Theorem (1)

\[W_4(-1) = \frac{\pi}{4} 7F_6 \left(\begin{array}{c} \frac{5}{4}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ \frac{1}{4}, 1, 1, 1, 1, 1 \end{array} | 1 \right). \]

Theorem (2)

Both of the following are equal to \(W_4(1) \):

\[
\frac{3\pi}{4} 7F_6 \left(\begin{array}{c} \frac{7}{4}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2} \\ \frac{3}{4}, 2, 2, 2, 1, 1 \end{array} | 1 \right) - \frac{3\pi}{8} 7F_6 \left(\begin{array}{c} \frac{7}{4}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ \frac{3}{4}, 2, 2, 2, 2, 1 \end{array} | 1 \right)
\]

\[
= \frac{9\pi}{4} 7F_6 \left(\begin{array}{c} \frac{7}{4}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2} \\ \frac{3}{4}, 2, 2, 2, 1, 1 \end{array} | 1 \right) - 2\pi 7F_6 \left(\begin{array}{c} \frac{5}{4}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ \frac{1}{4}, 1, 1, 1, 1, 1 \end{array} | 1 \right).
\]
Proof of Theorem (1)

The proof uses Bailey’s identity connecting $G_{4,4}^{2,4}$ to $7\,F_6$.

[Equation or proof not shown in the image]
Proof of Theorem (1)

The proof uses *Bailey’s identity* connecting $G_{4,4}^{2,4}$ to $7F_6$.

But recall that $W_4(-1)$ is a $G_{4,4}^{2,2}$.
Proof of Theorem (1)

The proof uses Bailey’s identity connecting $G_{4,4}^{2,4}$ to $7F_6$.

But recall that $W_4(-1)$ is a $G_{4,4}^{2,2}$.

Fear not! For we use the definition of Meijer G-functions to obtain the integrand for $W_4(-1)$:

$$\frac{\Gamma(\frac{1}{2} - t)^2 \Gamma(t)^2}{\Gamma(\frac{1}{2} + t)^2 \Gamma(1 - t)^2} x^t = \frac{\Gamma(\frac{1}{2} - t)^2 \Gamma(t)^4}{\Gamma(\frac{1}{2} + t)^2} \cdot \frac{\sin^2(\pi t)}{\pi^2} x^t,$$

using $\Gamma(t)\Gamma(1 - t) = \pi / \sin(\pi t)$.
Proof of Theorem (1)

The proof uses Bailey’s identity connecting $G_{4,4}^{2,4}$ to $7F_6$.

But recall that $W_4(-1)$ is a $G_{4,4}^{2,2}$.

Fear not! For we use the definition of Meijer G-functions to obtain the integrand for $W_4(-1)$:

$$\frac{\Gamma\left(\frac{1}{2} - t\right)^2 \Gamma(t)^2}{\Gamma\left(\frac{1}{2} + t\right)^2 \Gamma(1 - t)^2} x^t = \frac{\Gamma\left(\frac{1}{2} - t\right)^2 \Gamma(t)^4}{\Gamma\left(\frac{1}{2} + t\right)^2} \cdot \frac{\sin^2(\pi t)}{\pi^2} x^t,$$

using $\Gamma(t)\Gamma(1 - t) = \pi / \sin(\pi t)$.

We choose the contour to enclose the poles of $\Gamma\left(\frac{1}{2} - t\right)$. $\sin^2(\pi t)$ does not interfere with the residues, for it equals 1 at half integers, so it can be ignored. Then the right-hand side is the integrand of a $G_{4,4}^{2,4}$.
Proof of Theorem (2), first equality

Nesterenko’s theorem connects $G_{4,4}^{2,4}$ to a triple integral. The entries in the $G_{4,4}^{2,4}$ need to satisfy special properties. In particular,
Proof of Theorem (2), first equality

Nesterenko’s theorem connects $G_{4,4}^{2,4}$ to a triple integral. The entries in the $G_{4,4}^{2,4}$ need to satisfy special properties. In particular,

$$a(z) := G_{4,4}^{2,2} \left(\begin{array}{c} -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2} \\ 0, 1, 1, 1 \end{array} \middle| z \right)$$

does not satisfy these properties.

But $a(1) = -2\pi W_4(1)$.

Proof of Theorem (2), first equality

Nesterenko’s theorem connects $G^{2,4}_{4,4}$ to a triple integral. The entries in the $G^{2,4}_{4,4}$ need to satisfy special properties. In particular,

$$a(z) := G^{2,2}_{4,4} \left(-\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2} \middle| z \right)$$
does not satisfy these properties.

But $a(1) = -2\pi W_4(1)$.

However, $c := -G^{2,2}_{4,4} \left(-\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2} \middle| 1 \right)$ does. Experimentally we observed $a(1) = 4c$.
Proof of Theorem (2), first equality

Nesterenko’s theorem connects $G_{4,4}^{2,4}$ to a triple integral. The entries in the $G_{4,4}^{2,4}$ need to satisfy special properties. In particular, $a(z) := G_{4,4}^{2,2} \left(\frac{0,1,1,1}{-\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}} | z \right)$ does not satisfy these properties.

But $a(1) = -2\pi W_{4}(1)$.

However, $c := -G_{4,4}^{2,2} \left(\frac{0,1,1,1}{\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}} | 1 \right)$ does. Experimentally we observed $a(1) = 4c$.

We use these easy identities:

$$\frac{d}{dz} \left(z^{-b_1} G_{4,4}^{2,2} \left(\frac{a_1, a_2, a_3, a_4}{b_1, b_2, b_3, b_4} \mid z \right) \right) = \frac{-1}{z^{1+b_1}} G_{4,4}^{2,2} \left(\frac{a_1, a_2, a_3, a_4}{b_1+1, b_2, b_3, b_4} \mid z \right),$$

$$\frac{d}{dz} \left(z^{1-a_1} G_{4,4}^{2,2} \left(\frac{a_1, a_2, a_3, a_4}{b_1, b_2, b_3, b_4} \mid z \right) \right) = \frac{1}{z^{a_1}} G_{4,4}^{2,2} \left(\frac{a_1-1, a_2, a_3, a_4}{b_1, b_2, b_3, b_4} \mid z \right).$$
Applying the first identity to $a(z)$ and using the *product rule*, we get $\frac{1}{2}a(1) + a'(1) = c$.
Applying the first identity to $a(z)$ and using the *product rule*, we get $\frac{1}{2}a(1) + a'(1) = c$.

Applying the second identity to $a(z)$, we obtain $a'(1) = -c$ after simplifications. Hence $a(1) = 4c$.
Applying the first identity to \(a(z) \) and using the \textit{product rule}, we get \(\frac{1}{2}a(1) + a'(1) = c \).

Applying the second identity to \(a(z) \), we obtain \(a'(1) = -c \) after simplifications. Hence \(a(1) = 4c \).

Using Nesterenko’s theorem:

\[
W_4(1) = \frac{4}{\pi^3} \int_0^1 \int_0^1 \int_0^1 \sqrt{\frac{x(1-y)(1-z)}{(1-x)yz(1-x(1-yz))}} \, dx \, dy \, dz.
\]
Applying the first identity to $a(z)$ and using the product rule, we get $\frac{1}{2}a(1) + a'(1) = c$.

Applying the second identity to $a(z)$, we obtain $a'(1) = -c$ after simplifications. Hence $a(1) = 4c$.

Using Nesterenko’s theorem:

$$W_4(1) = \frac{4}{\pi^3} \int_0^1 \int_0^1 \int_0^1 \sqrt[3]{\frac{x(1-y)(1-z)}{(1-x)yz(1-x(1-yz))}} \, dx \, dy \, dz.$$

Change of variable $z' = 1 - z$, then use

$$(z')^{\frac{1}{2}} = (z')^{-\frac{1}{2}} (1 - (1 - z')) = (z')^{-\frac{1}{2}} - (z')^{-\frac{1}{2}} (1 - z')$$

to split it into two integrals.
Applying the first identity to $a(z)$ and using the product rule, we get $\frac{1}{2}a(1) + a'(1) = c$.

Applying the second identity to $a(z)$, we obtain $a'(1) = -c$ after simplifications. Hence $a(1) = 4c$.

Using Nesterenko’s theorem:

$$W_4(1) = \frac{4}{\pi^3} \int_0^1 \int_0^1 \int_0^1 \sqrt{\frac{x(1-y)(1-z)}{(1-x)yz(1-x(1-yz))}} \, dx \, dy \, dz.$$

Change of variable $z' = 1 - z$, then use

$$(z')^{\frac{1}{2}} = (z')^{-\frac{1}{2}}(1 - (1 - z')) = (z')^{-\frac{1}{2}} - (z')^{-\frac{1}{2}}(1 - z')$$

to split it into two integrals.

Each integral satisfies Zudilin’s theorem, which converts such integrals into $7F_6$'s.
Proof of Theorem (2), second equality

We convert all hypergeometric terms into triple integrals, judiciously using Bailey’s identity, Nesterenko’s theorem, and Zudilin’s theorem (for they produce multiple equivalent forms).
Proof of Theorem (2), second equality

We convert all hypergeometric terms into triple integrals, judiciously using Bailey’s identity, Nesterenko’s theorem, and Zudilin’s theorem (for they produce multiple equivalent forms).

We also use Zudilin’s result which gives a non-trivial permutation of the exponents of x, y, z in the triple integral, while leaving its value unchanged.
Proof of Theorem (2), second equality

We convert all hypergeometric terms into triple integrals, judiciously using Bailey’s identity, Nesterenko’s theorem, and Zudilin’s theorem (for they produce multiple equivalent forms).

We also use Zudilin’s result which gives a non-trivial permutation of the exponents of \(x, y, z \) in the triple integral, while leaving its value unchanged.

These integrals are nice enough that they can be reduced to 1D integrals of \(E \) and \(K \).
Proof of Theorem (2), second equality

We convert all hypergeometric terms into triple integrals, judiciously using Bailey’s identity, Nesterenko’s theorem, and Zudilin’s theorem (for they produce multiple equivalent forms).

We also use Zudilin’s result which gives a non-trivial permutation of the exponents of x, y, z in the triple integral, while leaving its value unchanged.

These integrals are nice enough that they can be reduced to 1D integrals of E and K.

When we pick the “right” integrals, the integrands (as functions of E and K) on both sides equal.
For \(n \geq 4 \),

\[
p_n(t) = \int_0^\infty xt J_0(xt) J_0^n(x) \, dx
\]
For $n \geq 4$,

$$p_n(t) = \int_0^\infty xtJ_0(xt)J_n^n(x)dx$$

So probability of returning to the unit disk is

$$\int_0^1 p_n(t)dt = \int_0^\infty J_1(x)J_n^n(x)dx = \left[\frac{-J_0(x)^{n+1}}{n+1}\right]_0^\infty = \frac{1}{n+1}.$$
For $n \geq 4$,

$$p_n(t) = \int_0^\infty xtJ_0(xt)J_n^0(x)dx$$

So probability of returning to the unit disk is

$$\int_0^1 p_n(t)\,dt = \int_0^\infty J_1(x)J_n^0(x)dx = \left[\frac{-J_0(x)^{n+1}}{n+1}\right]_0^\infty = \frac{1}{n+1}.$$

For $n = 2$ and 3 the probability is elementary.
For $n \geq 4$,

$$p_n(t) = \int_0^\infty xt J_0(xt) J_0^n(x) \, dx$$

So probability of returning to the unit disk is

$$\int_0^1 p_n(t) \, dt = \int_0^\infty J_1(x) J_0^n(x) \, dx = \left[\frac{-J_0(x)^{n+1}}{n+1} \right]_0^\infty = \frac{1}{n+1}.$$

For $n = 2$ and 3 the probability is elementary.

p_n is smooth for $n \geq 6$.
• Our definition of p_n takes advantage of radial symmetry. A true 2D probability density ψ_n requires

$$W_n(s) = \int_0^n \psi_n(x) x^s 2\pi x \, dx.$$

That is, $p_n(x) = 2\pi x \psi_n(x)$.

Lord Rayleigh
Our definition of p_n takes advantage of radial symmetry. A true 2D probability density ψ_n requires

\[W_n(s) = \int_0^n \psi_n(x)x^s \, 2\pi x\, dx. \]

That is, $p_n(x) = 2\pi x\psi_n(x)$.

Rayleigh gave approximate ψ_n for large n, first by approximating the problem in 1D using the central limit theorem (for Bernoulli trials: $\frac{1}{\sqrt{n\pi/2}}e^{-2x^2/n}$).
Our definition of \(p_n \) takes advantage of radial symmetry. A true 2D probability density \(\psi_n \) requires

\[
W_n(s) = \int_0^n \psi_n(x) x^s 2\pi x dx.
\]

That is, \(p_n(x) = 2\pi x \psi_n(x) \).

Rayleigh gave approximate \(\psi_n \) for large \(n \), first by approximating the problem in 1D using the central limit theorem (for Bernoulli trials: \(\frac{1}{\sqrt{n\pi/2}} e^{-2x^2/n} \)).

He then allowed the walks to be on a lattice, finally relaxing it to the plane, modifying his approximation.
Lord Rayleigh

- Our definition of p_n takes advantage of radial symmetry. A true 2D probability density ψ_n requires

$$W_n(s) = \int_0^n \psi_n(x) x^s 2\pi x \mathrm{d}x.$$

That is, $p_n(x) = 2\pi x \psi_n(x)$.

- Rayleigh gave approximate ψ_n for large n, first by approximating the problem in 1D using the central limit theorem (for Bernoulli trials: $1/\sqrt{n\pi/2} e^{-2x^2/n}$).

- He then allowed the walks to be on a lattice, finally relaxing it to the plane, modifying his approximation.

- $\psi_n(x) \approx \frac{1}{n\pi} e^{-x^2/n}$, like a 2D central limit theorem.
Our definition of p_n takes advantage of radial symmetry. A true 2D probability density ψ_n requires

$$W_n(s) = \int_0^n \psi_n(x)x^s \, 2\pi x \, dx.$$

That is, $p_n(x) = 2\pi x \psi_n(x)$.

Rayleigh gave approximate ψ_n for large n, first by approximating the problem in 1D using the central limit theorem (for Bernoulli trials: $\frac{1}{\sqrt{n\pi/2}} e^{-2x^2/n}$).

He then allowed the walks to be on a lattice, finally relaxing it to the plane, modifying his approximation.

$$\psi_n(x) \approx \frac{1}{n\pi} e^{-x^2/n},$$

like a 2D central limit theorem.

This is very accurate even for moderate n.
\(p_n \) with approximations superimposed.
Recursion for W_n

We condition the distance z of an $(n + m)$-step walk on x (first n steps), followed by y (remaining m steps).
Recursion for W_n

We condition the distance z of an $(n + m)$-step walk on x (first n steps), followed by y (remaining m steps).

By the cosine rule,

$$z^2 = x^2 + y^2 + 2xy \cos(\theta).$$
Recursion for W_n

We condition the distance z of an $(n + m)$-step walk on x (first n steps), followed by y (remaining m steps).

By the \textit{cosine rule},

$$z^2 = x^2 + y^2 + 2xy \cos(\theta).$$

The moments are worked out by CAS:

$$g_s(x, y) := \frac{1}{\pi} \int_0^\pi z^s \, d\theta = y^s \, \text{Re} \, _2F_1 \left(\begin{array}{c} \frac{-s}{2}, \frac{-s}{2} \\ 1 \end{array} \middle| \frac{x^2}{y^2} \right).$$
Recursion for W_n

We condition the distance z of an $(n + m)$-step walk on x (first n steps), followed by y (remaining m steps).

By the cosine rule,

$$z^2 = x^2 + y^2 + 2xy \cos(\theta).$$

The moments are worked out by CAS:

$$g_s(x, y) := \frac{1}{\pi} \int_0^{\pi} z^s \, d\theta = y^s \, \text{Re} \, _2F_1 \left(\begin{array}{c} -\frac{s}{2}, -\frac{s}{2} \\ 1 \end{array} \left| \frac{x^2}{y^2} \right. \right).$$

Therefore $W_{n+m}(s) = \int_0^n \int_0^m g_s(x, y) \, p_n(x)p_m(y) \, dy \, dx$. \hspace{1cm} (1)
Recursion for ψ_n

Let \mathbf{r} be the position vector after n steps, and \mathbf{s} be the position vector of the nth step.
Recursion for ψ_n

Let r be the position vector after n steps, and s be the position vector of the nth step.

Then, upon using polar coordinates and the cosine rule,

$$
\psi_n(r) = \int \frac{\delta_1(|s|)}{2\pi} \psi_{n-1}(|r-s|)ds = \int_0^{2\pi} \psi_{n-1}\left(\sqrt{r^2 + 1 - 2r \cos t}\right)\frac{dt}{2\pi}.
$$
Recursion for ψ_n

Let \mathbf{r} be the position vector after n steps, and \mathbf{s} be the position vector of the nth step.

Then, upon using polar coordinates and the cosine rule,

$$\psi_n(\mathbf{r}) = \int \frac{\delta_1(|\mathbf{s}|)}{2\pi} \psi_{n-1}(|\mathbf{r}-\mathbf{s}|) d\mathbf{s} = \int_0^{2\pi} \psi_{n-1}\left(\sqrt{r^2 + 1 - 2r \cos t}\right) \frac{d}{dt}. $$

Combined with ψ_2, this gives

$$p_3(x) = \frac{\sqrt{x}}{\pi^2} \text{Re} \ K\left(\sqrt{\frac{(x + 1)^3(3 - x)}{16x}}\right).$$
Recursion for ψ_n

Let r be the position vector after n steps, and s be the position vector of the nth step.

Then, upon using polar coordinates and the cosine rule,

$$\psi_n(r) = \int \frac{\delta_1(|s|)}{2\pi} \psi_{n-1}(|r-s|) ds = \int_0^{2\pi} \psi_{n-1}\left(\sqrt{r^2 + 1 - 2r \cos t}\right) \frac{dt}{2\pi}.$$

Combined with ψ_2, this gives

$$p_3(x) = \frac{\sqrt{x}}{\pi^2} \text{Re} \ K\left(\sqrt{\frac{(x+1)^3(3-x)}{16x}}\right).$$

Put $r = 0$, we get $\psi_n(0) = \psi_{n-1}(1)$.
Recursion for ψ_n

Let r be the position vector after n steps, and s be the position vector of the nth step.

Then, upon using polar coordinates and the cosine rule,

$$\psi_n(r) = \int \frac{\delta_1(|s|)}{2\pi} \psi_{n-1}(|r-s|) ds = \int_0^{2\pi} \psi_{n-1}(\sqrt{r^2 + 1 - 2r \cos t}) \frac{dt}{2\pi}. $$

Combined with ψ_2, this gives

$$p_3(x) = \frac{\sqrt{x}}{\pi^2} \text{Re} \ K \left(\sqrt{\frac{(x+1)^3(3-x)}{16x}} \right).$$

Put $r = 0$, we get

$$\psi_n(0) = \psi_{n-1}(1) = \frac{p_{n-1}(1)}{2\pi} = \frac{p'_{n}(0)}{2\pi} = \frac{\text{Res}_{-2} W_n}{2\pi}. $$
Alternative form for p_n

We now use the *sine rule* to make a change variable, so the last integral in (1) becomes dz instead of dx:

$$W_{n+m}(s) = \int_0^{n+m} z^s \left\{ \int_0^n \int_0^\pi \frac{z}{\pi y} p_n(x)p_m(y) dt dx \right\} dz,$$

where $y = \sqrt{x^2 + z^2 - 2xz \cos t}$.
We now use the *sine rule* to make a change variable, so the last integral in (1) becomes dz instead of dx:

$$W_{n+m}(s) = \int_0^{n+m} z^s \left\{ \int_0^n \int_0^\pi \frac{z}{\pi y} p_n(x)p_m(y)\,dt\,dx \right\} \,dz,$$

where $y = \sqrt{x^2 + z^2 - 2xz \cos t}$.

By uniqueness, the expression inside the braces is p_{n+m}.
Alternative form for p_n

We now use the *sine rule* to make a change variable, so the last integral in (1) becomes dz instead of dx:

$$W_{n+m}(s) = \int_0^{n+m} z^s \left\{ \int_0^n \int_0^\pi \frac{z}{\pi y} p_n(x)p_m(y) \, dt \, dx \right\} \, dz,$$

where $y = \sqrt{x^2 + z^2 - 2xz \cos t}$.

By uniqueness, the expression inside the braces is p_{n+m}.

Combined with p_3, we have

$$p_4(t) = \frac{8t}{\pi^3} \int_0^2 \text{Re} \left(\frac{K \left(\sqrt{\frac{16xt}{(x+t)^2(4-(x-t)^2)}} \right)}{\sqrt{(x+t)^2(4-(x-t)^2)}} \right) \frac{dx}{\sqrt{4-x^2}},$$

which is better numerically than its Bessel counterpart.
Poles of W_3 via p_3

In p_3, we have $K\left(\sqrt{\frac{16x^3}{(3-x)^3(1+x)}}\right) = \frac{3-x}{3+3x} K\left(\sqrt{\frac{16x}{(3-x)(1+x)^3}}\right)$, as both sides satisfy the same differential equation.
Poles of W_3 via p_3

In p_3, we have $K \left(\sqrt{\frac{16x^3}{(3-x)^3(1+x)}} \right) = \frac{3-x}{3+3x} K \left(\sqrt{\frac{16x}{(3-x)(1+x)^3}} \right)$, as both sides satisfy the same differential equation.

So we can write p_3 cleanly in terms of the AGM, enabling us to use a result of Borwein et al. So on $[0, 1)$

$$p_3(x) = \frac{2}{\sqrt{3\pi}} x \sum_{k=0}^{\infty} W_3(2k) \left(\frac{x}{3} \right)^{2k}.$$
Poles of W_3 via p_3

In p_3, we have $K\left(\sqrt{\frac{16x^3}{(3-x)^3(1+x)}}\right) = \frac{3-x}{3+3x} \cdot K\left(\sqrt{\frac{16x}{(3-x)(1+x)^3}}\right)$, as both sides satisfy the same differential equation.

So we can write p_3 cleanly in terms of the AGM, enabling us to use a result of Borwein et al. So on $[0, 1)$

$$p_3(x) = \frac{2}{\sqrt{3\pi}} x \sum_{k=0}^{\infty} W_3(2k) \left(\frac{x}{3}\right)^{2k}.$$

Using this series, we compute (with lots of care), for small $a > 0,$

$$\int_{0}^{a} p_3(x)x^s dx = \frac{2a^{s+2}}{\sqrt{3\pi}(s + 2)} + \frac{2a^{s+4}}{3\sqrt{3\pi}(s + 4)} + \cdots$$

so the residues of W_3 can be read off, namely,

$$\text{Res}_{(-2k-2)} W_3 = \frac{2}{\pi \sqrt{3}} \frac{W_3(2k)}{9^k}.$$

Poles of W_3 via p_3

In p_3, we have $K\left(\sqrt{\frac{16x^3}{(3-x)^3(1+x)}}\right) = \frac{3-x}{3+3x} K\left(\sqrt{\frac{16x}{(3-x)(1+x)^3}}\right)$, as both sides satisfy the same differential equation.

So we can write p_3 cleanly in terms of the AGM, enabling us to use a result of Borwein et al. So on $[0, 1)$

$$p_3(x) = \frac{2}{\sqrt{3\pi}}x \sum_{k=0}^{\infty} W_3(2k) \left(\frac{x}{3}\right)^{2k}.$$

Using this series, we compute (with lots of care), for small $a > 0,$

$$\int_0^a p_3(x)x^s \, dx = \frac{2a^{s+2}}{\sqrt{3\pi}(s+2)} + \frac{2a^{s+4}}{3\sqrt{3\pi}(s+4)} + \cdots$$

so the residues of W_3 can be read off, namely,

$$\text{Res}_{(-2k-2)} W_3 = \frac{2}{\pi \sqrt{3}} \frac{W_3(2k)}{9^k}.$$

But if p_4 admits a similar series, how can this reconcile with the double poles of W_4?
Functional equation for p_3

As $\text{Re } K(x) = \frac{1}{x}K\left(\frac{1}{x}\right)$ for $x > 1$, we split p_3 over $[0, 1]$ and $[1, 3]$, obtaining $W_3(-1) = \int_0^3 \frac{p_3(x)}{x} \, dx =$

$$
\frac{4}{\pi^2} \int_0^1 K\left(\sqrt{\frac{16x}{(3-x)(1+x)^3}}\right) \, dx + \frac{1}{\pi^2} \int_1^3 K\left(\sqrt{\frac{(3-x)(1+x)^3}{16x}}\right) \, dx.
$$
Functional equation for p_3

As $\text{Re } K(x) = \frac{1}{x} K \left(\frac{1}{x} \right)$ for $x > 1$, we split p_3 over $[0, 1]$ and $[1, 3]$, obtaining $W_3(-1) = \int_{0}^{3} \frac{p_3(x)}{x} \, dx =$

$$\frac{4}{\pi^2} \int_{0}^{1} K \left(\sqrt{\frac{16x}{(3-x)(1+x)^3}} \right) \frac{dx}{\sqrt{(3-x)(1+x)^3}} + \frac{1}{\pi^2} \int_{1}^{3} K \left(\sqrt{\frac{(3-x)(1+x)^3}{16x}} \right) \frac{dx}{\sqrt{x}}.$$

Numerically we noted the two integrals equal. Proof: change of variable $x \to \frac{3-t}{1+t}$ in the second integral.
Functional equation for p_3

As $\text{Re } K(x) = \frac{1}{x} K \left(\frac{1}{x} \right)$ for $x > 1$, we split p_3 over $[0, 1]$ and $[1, 3]$, obtaining $W_3(-1) = \int_0^3 \frac{p_3(x)}{x} \, dx =$

\[
\frac{4}{\pi^2} \int_0^1 K \left(\sqrt{\frac{16x}{(3-x)(1+x)^3}} \right) \, dx + \frac{1}{\pi^2} \int_1^3 K \left(\sqrt{\frac{(3-x)(1+x)^3}{16x}} \right) \, dx.
\]

Numerically we noted the two integrals equal. Proof: change of variable $x \to \frac{3-t}{1+t}$ in the second integral.
This leads to a modular property: with the involution $\sigma(x) = \frac{3-x}{1+x}$,

\[
p_3(x) = \frac{4x}{(3-x)(x+1)} p_3(\sigma(x)).
\]
Functional equation for p_3

As $\text{Re } K(x) = \frac{1}{x} K \left(\frac{1}{x} \right)$ for $x > 1$, we split p_3 over $[0, 1]$ and $[1, 3]$, obtaining $W_3(-1) = \int_0^3 \frac{p_3(x)}{x} \, dx =$

$$\frac{4}{\pi^2} \int_0^1 K \left(\frac{\sqrt{\frac{16x}{(3-x)(1+x)^3}}}{\sqrt{(3-x)(1+x)^3}} \right) \, dx + \frac{1}{\pi^2} \int_1^3 K \left(\frac{\sqrt{\frac{(3-x)(1+x)^3}{16x}}}{\sqrt{x}} \right) \, dx.$$

Numerically we noted the two integrals equal. Proof: change of variable $x \to \frac{3-t}{1+t}$ in the second integral.

This leads to a modular property: with the involution $\sigma(x) = \frac{3-x}{1+x}$,

$$p_3(x) = \frac{4x}{(3-x)(x+1)} p_3(\sigma(x)).$$

Also, $W_3(-1) = \frac{4}{\sqrt{3}\pi} \sum_{k=0}^{\infty} \frac{W_3(2k)}{9^k(2k+1)}$.
Series for p_4

Jon asked us to plot $p'_4(x)$ for small x. Armin correctly used the true formula,

$$\lim_{h \to 0} \frac{p_4(x + h) - p_4(x)}{h},$$

I, however, foolishly used the "formula",

$$\lim_{h \to 0} \frac{p_4(x + h) - p_4(x)}{x}.$$

Amazingly, we produced almost the same plot, except mine was vertically translated up by $a \approx 0.14$.

Unfazed by my failure to find a derivative from first principles, this means, very nearly, p_4 satisfies the differential equation

$$f'(x) + ax = f(x),$$

which even I can solve:

$$f(x) = bx - ax \log x,$$

where $b \approx 0.33$ as

$$\int_1^0 f(x) \, dx = \frac{1}{5}.$$
Series for p_4

Jon asked us to plot $p'_4(x)$ for small x. Armin correctly used the true formula,

$$\lim_{h \to 0} \frac{p_4(x + h) - p_4(x)}{h},$$

I, however, foolishly used the “formula”,

$$\lim_{h \to 0} \frac{p_4(x + h) - p_4(h)}{x}.$$
Series for p_4

Jon asked us to plot $p'_4(x)$ for small x. Armin correctly used the true formula,

$$\lim_{h \to 0} \frac{p_4(x + h) - p_4(x)}{h},$$

I, however, foolishly used the “formula”,

$$\lim_{h \to 0} \frac{p_4(x + h) - p_4(h)}{x}.$$

Amazingly, we produced almost the same plot, except mine was vertically translated up by $a \approx 0.14$.
Series for p_4

Jon asked us to plot $p'_4(x)$ for small x. Armin correctly used the true formula,

$$\lim_{h \to 0} \frac{p_4(x + h) - p_4(x)}{h},$$

I, however, foolishly used the “formula”,

$$\lim_{h \to 0} \frac{p_4(x + h) - p_4(h)}{x}.$$

Amazingly, we produced almost the same plot, except mine was vertically translated up by $a \approx 0.14$. Unfazed by my failure to find a derivative from first principles, this means, very nearly, p_4 satisfies the differential equation

$$f'(x) + a = \frac{f(x)}{x},$$

which even I can solve: $f(x) = bx - ax \log x$, where $b \approx 0.33$ as $\int_0^1 f(x) \, dx = \frac{1}{5}$.
This explains the double pole!
This explains the double pole!

In fact, if the series were to be consistent with the residues and coefficients of the double pole, then we must have:

\[p_4(x) = \sum_{n=1}^{\infty} (a_4(n) - r_4(n) \log x) x^{2n-1}, \]

where \(a_4(n) \) are the residues at \(-2n\) and \(r_4(n) \) are the coefficients of the double pole at \(-2n\).
This explains the double pole!

In fact, if the series were to be consistent with the residues and coefficients of the double pole, then we must have:

$$p_4(x) = \sum_{n=1}^{\infty} \left(a_4(n) - r_4(n) \log x \right) x^{2n-1},$$

where $a_4(n)$ are the residues at $-2n$ and $r_4(n)$ are the coefficients of the double pole at $-2n$.

The first approximation is

$$\left(\frac{9 \log 2}{2\pi^2} - \frac{3}{2\pi^2} \log x \right) x.$$

$r_4(n)$ may be obtained in closed form by recursion.
p_4 versus conjectured expansion on $[0, 2]$.
p_4 versus conjectured expansion on $[0, 2]$.

Like p_3, p_4 also has a clean AGM form.
p_4 versus conjectured expansion on $[0, 2]$.

Like p_3, p_4 also has a clean AGM form.

p_4 can also be written in terms of the Domb numbers,

$$W_4(2n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{2k}{k} \binom{2n - 2k}{n - k}.$$
Closed forms

From our series for p_3, Zudilin (using modular tools) deduced the closed form

$$p_3(x) = \frac{2\sqrt{3}x}{\pi(3 + x^2)} \; _2F_1 \left(\begin{array}{c} \frac{1}{3}, \frac{2}{3} \\ 1 \\ \end{array} \right| \frac{x^2(9 - x^2)^2}{(3 + x^2)^3} \right),$$
Closed forms

From our series for p_3, Zudilin (using modular tools) deduced the closed form

$$p_3(x) = \frac{2\sqrt{3}x}{\pi(3 + x^2)} \ _2F_1 \left(\frac{1}{3}, \frac{2}{3} \left| \frac{x^2(9 - x^2)^2}{(3 + x^2)^3} \right. \right),$$

as well as a closed formed for p_4 on $[2, 4]$:

$$p_4(x) = \frac{2\sqrt{16 - x^2}}{\pi^2 x} \ _3F_2 \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \left| \frac{(16 - x^2)^3}{108x^4} \right. \right).$$

Numerically, this works on $[0, 4]$ by taking the real part.
Closed forms

From our series for p_3, Zudilin (using modular tools) deduced the closed form

$$p_3(x) = \frac{2\sqrt{3}x}{\pi(3 + x^2)} 2F_1 \left(\frac{1}{3}, \frac{2}{3} \left| \frac{x^2(9 - x^2)^2}{(3 + x^2)^3} \right. \right),$$

as well as a closed formed for p_4 on $[2, 4]$:

$$p_4(x) = \frac{2\sqrt{16 - x^2}}{\pi^2 x} 3F_2 \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \left| \frac{(16 - x^2)^3}{108x^4} \right. \right).$$

Numerically, this works on $[0, 4]$ by taking the real part.

We get eerie connections with $W_3(s)$, for instance

$p_4(2) = \frac{\sqrt{3}}{\pi} W_3(-1)$ and $p_3(\sqrt{3})^2 = 4p_3(2\sqrt{3} - 3)^2 = \frac{3}{2}\pi^2 W_3(-1)$.
Future work

- Prove expansion for p_4, and prove closed form on all of $[0, 4]$.
Future work

- Prove expansion for p_4, and prove closed form on all of $[0, 4]$.
- Other properties of p_4, for instance any functional equations, or points of inflection.
Future work

- Prove expansion for p_4, and prove closed form on all of $[0, 4]$.
- Other properties of p_4, for instance any functional equations, or points of inflection.
- Properties of W_5 and p_5, for example, why is p_5 almost linear on $[0, 1]$?
Future work

- Prove expansion for \(p_4 \), and prove closed form on all of \([0, 4]\).

- Other properties of \(p_4 \), for instance any functional equations, or points of inflection.

- Properties of \(W_5 \) and \(p_5 \), for example, why is \(p_5 \) almost linear on \([0, 1]\)?

- Links to Calabi-Yau differential equations?
Future work

- Prove expansion for p_4, and prove closed form on all of $[0, 4]$.
- Other properties of p_4, for instance any functional equations, or points of inflection.
- Properties of W_5 and p_5, for example, why is p_5 almost linear on $[0, 1]$?
- Links to Calabi-Yau differential equations?
- More closed forms for derivatives and residues for W_3 and W_4.
Thank you!
Thank you!

- Comments?
- Questions?
- Criticisms?